RECORD CENTER

15 1994

SAFETY-KLEEN CHICAGO RECYCLE CENTER PHASE I RFI REPORT

Prepared for:

Safety-Kleen Corporation Chicago, Illinois

Prepared by:

LTI, Limno-Tech, Inc. Ann Arbor, Michigan

THE WHOICE

June 30, 1994

TABLE OF CONTENTS

16	In-Situ Hydraulic Conductivity Testing	4.4	
15			
13	Groundwater Investigation Procedures	4.3	
10	4.2.1 Soil Boring Installation 4.2.2 Soil Sampling, Field Screening and Analysis 4.2.3 Laboratory Methods. 4.2.4 QA/QC 4.2.5 Decontamination		
10	RFI PROCEDURES 4.1 General 4.2 Soil Investigation Procedures	. RFI 4.1 4.2	4
: : : :	SUMMARY OF RFI ACTIVITIES/COSTS, PERSONNEL QUALIFICATIONS AND CERTIFICATIONS 3.1 Summary of RFI Activities and Costs 3.2 Personnel Qualifications 3.3 Certifications		ω
	C LOCATION AND BACKGROUND Location Present Facility Operations Historical Facility Operations Description of the SWMU Areas Description of Surrounding Areas	. CRC 2.1 1 2.2 1 2.3 1 2.4 1 2.5 1	2.
4 4 4 0	INTRODUCTION I.1 General I.2 RFI Purpose and Goals I.3 RFI Report Content and Organization	. IN 1.1 1.2 1.3	
: 2	EXECUTIVE SUMMARY	XEC	(I)
1	LIST OF FIGURES	IST (Ľ
:. -	LIST OF TABLES	IST (L

34	REFERENCES 34	R H
32		
32	ms for Additional Site Activities	
31		
31	CONCLUSIONS AND RECOMMENDATIONS	7.
:	Aleu #1	
ب 0	RFI Groundwater Results in the Vicinity of Container Storage	
28	RFI Groundwater Results in the Vicinity of Tank Farms #2 and #3	
28	Groundwater	
	Summary of Inorganic Compounds Detected in	
27	f Organic Compounds Detected in Groundwater	
27		
27	6.3.2 Chemicals Detected in Groundwater	
26	a#1	
25	d #3	
24		
24		
23	General	
23	6.3.1 Chemicals Detected in Soil.	
23	and Distribution	
21	•	
20	Regional Hydrogeology	
19		
18	6.2.1 Regional Geology	
18	Geologic and Hydrogeologic Evaluations	
18	6.1 General	
18	DATA EVALUATION AND DISCUSSION OF RESULTS	.6
17	5.3 Results of In-Situ Hydraulic Conductivity Testing	
17	Results of Groundwater Investigations	
17	S. I. Results of Soil Investigations 17	
17		

APPENDICES

APPENDIX A: SK-CRC RFI Phase I Personnel Qualifications

APPENDIX B: SK-CRC Phase I RFI Certifications

APPENDIX C: Color Photos of SK-CRC Phase I RFI Activities

APPENDIX D: Soil Boring Logs

APPENDIX E: Data Validation Procedures

APPENDIX F: IEPA Well Construction Diagrams

APPENDIX G: Well Development Logs

APPENDIX H: Well Head Screening and Groundwater Sampling Data

APPENDIX I: Slug Test Data and Calculations

LIST OF TABLES

Table 1	Chronological Summary of RFI Activities and Cost
Table 2	Soil Boring Screening Results
Table 3	Summary of December, 1993 Soil Sample Collections and Analyses
Table 4	List of Organic Compound Analytes for Soil and Groundwater
Table 5	List of Appendix I Analytes for MW2, Second Quarter Sampling Event
Table 6	Soil Analytical Results
Table 7	Soil Analytical Results (Qualified for 1993 data only)
Table 8	Groundwater Analytical Results
Table 9	Groundwater Analytical Results (Qualified for 1993/1994 data only)
Table 10	Appendix F/Appendix I Scan; Groundwater Analytical Results for MW-2
Table 11	Historic Static Water Level and Well Construction Data
Table 12	Summary of Hydraulic Conductivity Tests
Table 13	Summary of Detected Compounds in Soil and Occurrence
Table 14	Summary of Detected Compounds in Groundwater and Occurrence

LIST OF FIGURES

Figure 17 F	Figure 16 I	Figure 15 I	Figure 14 /	Figure 13 I	Figure 12	Figure 11 I	Figure 10 (Figure 9	Figure 8	Figure 7		Figure 6	Figure 5	Figure 4	Figure 3 (Figure 2	Figure 1
Potentiometric Surface Map. May 25, 1994	Potentiometric Surface Map, February 14, 1994	Potentiometric Surface Map, December 16, 1993	Approximate Elevation of Top CLAY Layer/Base Saturated Zone	Elevation of Top Clayey SILT/Silty CLAY Zone	Thickness of Upper FILL Zone (Feet)	D-D' Geological Profile	C-C' Geological Profile	B-B' Geological Profile	A-A' Geological Profile	Plan View of Geological Profiles	Locations	Scaled Vertical Representation of December, 1993 Soil Sampling	Soil Boring/Monitoring Well Location Map	SWMU Investigation Area	CRC Facility Plan	Site Topographic Map	Site Location

EXECUTIVE SUMMARY

schedule and reporting requirements specified in the September 23, 1993 Illinois Environmental Protection Agency (IEPA) qualified approval letter to the Workplan. Kleen to satisfy requirements of Section IV.B of the RCRA Hazardous Waste Management through early 1994. These activities were conducted by LTI personnel on behalf of Safetymodifications stipulated in the September 23, 1993 and December 20, 1993 IEPA approval accordance with the approved May 3, subsurface investigations conducted at the Safety-Kleen Chicago Recycle Center (CRC) in This RCRA Facility Investigation (RFI) report has been prepared by LTI-Limno-Tech, Inc. (LTI) on behalf of Safety-Kleen Corp. (Safety-Kleen) to document Phase I RCRA and Part B Permit (the permit) for the CRC. This report is submitted in accordance with the letters to the Workplan. The activities documented in this report were conducted from 1993 1993 RFI Phase I Workplan (Workplan) and

Farm #3. These SWMU areas were identified as areas of concern in the RCRA Facility Assessment (RFA) conducted by IEPA in 1990. The RFA was conducted as the first phase of the corrective action program, under the authority of RCRA Section 3004. the area north of Container Storage Area #1; and, the area south of Tank Farm #2 and Tank Phase I RFI be conducted for two Solid Waste Management Units (SWMUs) at the CRC: for the Phase I RFI stemmed from the recommendations of the RFA. Section IV B of the RCRA Hazardous Waste Management Part B Permit requires that a The requirements.

The goals of the required Phase I investigation are to:

<u>a</u> demonstrate conclusively whether or not any releases of hazardous wastes or in the September 23, 1993 IEPA qualified approval letter to the Workplan); hazardous constituents have occurred from these two SWMU areas (Item #3 11 THE PROPERTY OF THE PROPERTY O

- ਭ provide data regarding the nature, extent and distribution of impacts (page 1 of the Workplan); and
- determine the horizontal and vertical extent of fill material present in the area of to the Workplan). investigation (Item #11 in the September 23, 1993 IEPA qualified approval letter

chemicals in soils and groundwater at the site; and the extent and distribution of fill material Preliminary Phase II information was collected regarding the extent and distribution of the subsurface in the vicinities of Tank Farms #2 and #3, and Container Storage Area #1. alley located along the west side of Tank Farm No. 3, indicated that chemicals are present in present in the area of investigation has been determined Container Storage Area No. 1, Tank Farm No. 2 and Tank Farm #3, including the area of the II objectives. Subsurface soil and groundwater investigations conducted in the vicinities of Attachment G to the permit, and provided additional preliminary information related to Phase The scope of the investigation satisfied the objectives of a Phase I RFI, as specified in

thirteen feet of clayey silt/silty clay material which grades downward into a laterally extensive thin saturated silty mud zone at 50.5 feet below grade. contains a thin saturated muddy silt zone at approximately 37 to 38 feet below grade and a as sixty feet below grade at the western side of the site, in the vicinity of SB5/MW5, and average depth of ten feet below grade across the area of investigation. The clay exists as deep stiff, dark-grayish brown fine-laminated lakebed clay. The top of the clay unit occurs at an approximately one to seven feet of non-indigenous fill or topsoil material, underlain by up to The results of geological investigations indicate that soils at the site are comprised of

subsurface mounding in the clayey silt/silty clay zone and the lower clay unit. investigation. The fill material is thinnest in the vicinity of Tank Farm #3, where it overlies a The horizontal extent of the non-indigenous fill zone occurred throughout the area of

overlying the lower clay unit. Hydraulic conductivity testing indicates that the permeability of the clayey silt/silty clay unit ranges from 2.46×10^{-5} cm/sec to 8.16×10^{-4} cm/sec, and that the or responses to precipitation are indicated saturated zone. Significant variations in groundwater flow direction due to seasonal changes the site and appear to be related to the subsurface structure of the clay unit underlying the average permeability of the clay is 2.4 x 10-8 cm/sec. Groundwater flow directions vary across approximately 3 to 5 feet below grade at the site. The shallow, unconfined saturated zone below the water table is comprised of the fill material and clayey silt to silty clay soils The results of the hydrogeological investigations indicate that a water table exists at

bedrock aquifers clay unit. There is no evidence that chemicals resulting from site releases are present in the are known to exist within 1500 feet of the CRC. Regional bedrock aquifers underlie the lower The shallow saturated zone is not used as an aquifer at the site, and no water withdrawal wells

detected in groundwater samples collected from monitoring well MW2 detected in soils and groundwater samples; no PCBs, sulfides, cyanide, dioxins, furans were Chemical constituents were detected in shallow soils and groundwater in the vicinities of the VOCs and SVOCs and some metals (comparable to background levels) were

horizontal extent and distribution of chemicals in soils and groundwater. southern and western extent and distribution of chemicals in soils and groundwater are fairly additional confirmatory sampling is needed in the vicinity of Container Storage Area #1. limited to a depth of 20 feet below grade throughout most of the area of investigation. Some well defined. The vertical distribution of soils (and groundwater) impacts is fairly well defined, and is Further investigations are needed to determine the northern and eastern

in soil and groundwater obtained from the Phase I RFI and further determine the extent and distribution of chemicals Additional activities are proposed for the CRC to supplement the hydrogeological information

INTRODUCTION

GENERAL

submitted in accordance with the schedule and reporting requirements specified in the Hazardous Waste Management Part B Permit (the permit) for the CRC. This report is personnel on behalf of Safety-Kleen to satisfy requirements of Section IV.B of the RCRA conducted from 1993 through early 1994. These activities were conducted by LTI approval letters to the Workplan. and modifications stipulated in the September 23, 1993 and December 20, 1993 IEPA and subsurface investigations conducted at the Safety-Kleen Chicago Recycle Center letter to the Workplan September 23, 1993 Illinois Environmental Protection Agency (IEPA) qualified approval (CRC) in accordance with the approved May 3, 1993 RFI Phase I Workplan (Workplan) Inc. (LTI) on behalf of Safety-Kleen Corp. (Safety-Kleen) to document Phase I RCRA This RCRA Facility Investigation (RFI) report has been prepared by LTI-Limno-Tech, The activities documented in this report were

RFI PURPOSE AND GOALS

These SWMU areas include (see Figure 4):, Phase I RFI be conducted for two Solid Waste Management Units (SWMUs) at the CRC Section IV.B of the RCRA Hazardous Waste Management Part B Permit requires that a

- the area north of Container Storage Area #1; and
 the area south of Tank Farm #2 and Tank Farm # the area south of Tank Farm #2 and Tank Farm #3

corrective action program, under the authority of RCRA Section 3004. The requirements (RFA) conducted by IEPA in 1990. The RFA was conducted as the first phase of the for the Phase I RFI stemmed from the recommendations of the RFA These SWMU areas were identified as areas of concern in the RCRA Facility Assessment

The goals of the required Phase I investigation are to:

- **a** demonstrate conclusively whether or not any releases of hazardous wastes or hazardous constituents have occurred from these two SWMU areas (Item #3 Workplan); in the September 23, 1993 IEPA qualified approval letter to the
- provide data regarding the nature, extent and distribution of impacts (page 1 of the Workplan); and
- determine the horizontal and vertical extent of fill material present in the area of investigation (Item #11 in the September 23, 1993 IEPA qualified approval letter to the Workplan).

Phase II objectives. Subsurface soil and groundwater investigations were conducted in the vicinities of Container Storage Area No. 1, Tank Farm No. 2 and Tank Farm #3, including the area of the alley located along the west side of Tank Farm No. 3. Attachment G to the permit, and provided additional preliminary information related to The scope of the investigation satisfied the objectives of a Phase I RFI, as specified in

1.3 RFI REPORT CONTENT AND ORGANIZATION

participated in the investigations, as specified in Item #5 of the September 23, 1993 IEPA qualified approval letter to the Workplan. Sections 4 and 5 detail the Phase I and information. Section 3 outlines the overall investigation activities and associated costs, and presents the qualifications and required certifications of the personnel who approval letter to the Workplan. Section 2 presents site location and background goals, as specified in Items # 5 and #19a of the September 23, 1993, IEPA qualified approval letter to the Workplan. Phase II investigations, as specified in Item #5h of the September 23, 1993 IEPA qualified #5, #19, #20 and #21 of the September 23, 1993 IEPA qualified approval letter to the subsurface investigation procedures and results, as specified in the workplan and in Items report organizational information, and presents the purpose for conducting the RFI and 7 summarizes the RFI conclusions and proposes recommended activities for additional Workplan. Data evaluations and discussion of results are presented in Section 6. Section This report is organized into seven (7) sections. This section provides introductory and

2. CRC LOCATION AND BACKGROUND

2.1 LOCATION

land in the Chicago Stockyards, an area with a long history of industrial use. The present Ashland Avenue. Figures 1 and 2 depict the CRC on a regional USGS topographic map and a site topographic map, respectively. The CRC occupies approximately eight acres of County, Illinois between 42nd Street and 43rd Street, approximately 1000 feet east of land use is characterized as urban commercial/industrial. The Chicago Recycle Center (CRC) is located within the city limits of Chicago, Cook

2.2 PRESENT FACILITY OPERATIONS

under Title 35 of the State of Illinois Rules and Regulations and a Hazardous Waste (effective November 4, 1992). The permit consists of a RCRA permit issued by IEPA store hazardous wastes under a RCRA Hazardous Waste Management Part B permit Amendments of 1984 to RCRA (HSWA). The CRC is an organic chemicals reclamation and recycling facility permitted to treat and Management Permit issued by USEPA under the Hazardous and Solid

shops, metal fabricators, and foundries. Processes utilized in the reclamation of used solvent or blending and processing of the material for use as a hazardous waste fuel distillation, fractionation, liquid-liquid extraction, and drying. solvents, solvent mixtures, and other solvent containing wastes include neutralization, manufacturers, wastes. The facility serves a variety of industries including chemical manufacturers, paint hydrocarbons, amines, alcohols, aliphatic and aromatic compounds, waste oils, and paint facilities. Reclamation and recycling operations involve either regeneration of the spent Wastes accepted at the facility include organic acids, chlorinated and fluorinated The CRC accepts organic chemicals and solvent wastes from industrial and commercial pharmaceutical manufacturers, electronics manufacturers, maintenance

vary from day to day. compounds at the CRC. Tank farms and container storage areas are used to manage or store a variety of The list of materials managed or stored in a particular unit may

permit. Other container storage areas are used for the storage of product. stored in Container Storage Area No. 1 are listed in Attachment A of the RCRA Part B hazardous waste storage capacity of 108,900 gallons. The wastes that are permitted to be constructed with secondary containment for spill and leak control, and has a maximum stored in Container Storage Area No. 1 (see Figure 3). Container Storage Area No. 1 is Hazardous wastes are received at the CRC in containers via trucks. All containers are

There are five existing tank farms at the CRC, originally containing 82 above-ground additional tanks RCRA regulations. 14 of which have been removed. In addition, four more tank farms have been proposed with 27 Of the 68 remaining tanks, 59 are subject to

2.3 HISTORICAL FACILITY OPERATIONS

the site in 1985 for its current use as a recycling center. operated by Custom Organics for industrial chemical processing. Safety-Kleen acquired Cooling House once occupied the site. Between 1969 and 1985, the site was owned and processing. A 1901 Sanborn map indicates that a structure called a Meat Preserving and The use of the CRC property prior to 1969 is unknown but likely associated with livestock

the tanks. According to the Safety-Kleen CRC manager, who was employed by Custom Organics between 1981 and 1985, the tanks were used for a variety of purposes, including the storage of hazardous waste, in-process material, product, and wastewater. only Tank Farm No. 3 was in existence. No records are available documenting the use of Between 1969 and 1985, when the facility was owned and operated by Custom Organics, and trichlorotrifluoroethane. butyrolactone; methylene chloride; n-methyl pyrrolidone; toluene; 1,1,1-trichloroethane; list of chemicals handled by Custom Organics included: dimethyl acetamide; gamma A partial

discontinued, and in 1991 they were removed under an approved RCRA closure plan. storage areas were constructed. The use of Tanks Nos. T190 through T193 in Tank Farm After Safety-Kleen purchased the facility in 1985, the present tank farms and container for the storage of hazardous waste, in-process material, and product was

2.4 DESCRIPTION OF THE SWMU AREAS

Phase I RFI be conducted for two SWMU areas at the CRC, including: 1) the area north and west of the Container Storage Area #1; and 2) the area south of Tank Farms #2 and contain any building structures or fixed equipment. Section IV.B of the RCRA Hazardous Waste Management Part B permit requires that the The extent of these SWMU areas is shown in Figure 4. These areas presently do not

equipment structures) since at least 1969. Subsurface obstructions encountered in the the site for historical operations related to livestock processing SWMU areas. As mentioned above, the CRC is in the Chicago Stockyard area, and was foundations and, therefore, suggest that buildings were once present in portions of the SWMU areas during previous soils investigations were characterized as old building The SWMU areas reportedly have been in their present state (without building or

storage in the area south of Tank Farm No. 3 on September 9, 1981, prior to Safety-Kleen indicate that open drums containing waste material and rain water were observed in impacted soil was excavated at that time. area on the west side of Container Storage Area No. 1. The area was uncontained, and gallons of trichlorotrifluoroethane (freon-113) which occurred on July 22, 1987, in the 1982, also prior to ownership by Safety-Kleen. Safety-Kleen documented a spill of 20 historical spills have been reported for the SWMU areas. No materials are presently managed or stored at the two SWMU areas. A spill of semi-solid waste material was observed in this area on October 10, IEPA Land Division files However,

been conducted. Between April and July, 1991, Tank Nos. 190 through 193 in Tank Farm #3 were removed from service and closed by Safety-Kleen. According to the closure slabs on which the four tanks had rested were removed, as were the northern and western decontaminated, then the tanks were removed and recycled as scrap metal. The concrete report (Canonie, 1991) the four above-ground steel tanks were emptied, cleaned, and walls of the concrete containment dike. For areas adjacent to the SWMU areas, specifically Tank Farm #3, closure activities have

2.5 DESCRIPTION OF SURROUNDING AREAS

the facility is West 43rd Street and Cameo Containers. of boxes and containers) and an Illinois Air Emission Station. The Ashland Cold Storage warehouse is located immediately to the west of the facility. Immediately to the south of commercial/industrial. Immediately to the east of the facility are Rosebud (manufacturers As illustrated in Figure 2, land use in the area surrounding the CRC is urban

other features which would affect the migration routes of potentially released materials exist within a 1500 foot radius of the facility (see Figure 2). A north-south trending sewer exists in the alley immediately to the west of the SWMU areas. There are no known No significant surface features such as lakes, ponds, wetlands, streams, depressions, or withdrawal wells in the 1500 foot radius around the CRC

standards for disposal facilities. The nearest surface water to the facility is the South the facility does not conduct any on-site disposal of waste, it is not subject to floodplain According to the RFA, the CRC is not located within any 100 year floodplain. Branch of the Chicago River, located approximately 1.5 miles to the north.

populations potentially exposed to potential releases from the SWMU areas would be residential exposure to potential releases in the area is minimal. which would be potentially threatened by a release from the SWMU areas. Similarly, there are no natural environmental systems, such as surface water bodies or wetlands, site is completely fenced limited to workers at the CRC and the adjacent industries. The operational portion of the Due to the exclusively urban/industrialized nature of the area in the vicinity of the CRC, Nearby human

က SUMMARY OF RFI ACTIVITIES/COSTS, PERSONNEL QUALIFICATIONS AND CERTIFICATIONS

3.1 SUMMARY OF RFI ACTIVITIES AND COSTS

applicable. associated with the CRC RFI, beginning with the May, 1993 Work Plan and ending with thus report. Workplan, Table 1 chronologically summarizes the primary activities and documents As specified in Item #5d in the September 23, 1993 IEPA qualified approval letter to the Included in Table 1 are the costs associated with these activities, where

3.2 PERSONNEL QUALIFICATIONS

supervision of LTI personnel. John D. Rebik and Associates (Dundee, Illinois) provided and fourth rounds of groundwater sampling (these data are not included in this report, but the first two rounds of groundwater sampling in December, 1993 and February, 1994 surveying services. were installed by Mateco Drilling Company (Grand Rapids, Michigan) under the 1994, as stipulated in Items #5, #6, #18 and #211). Soil borings and monitoring wells will be provided in the Third and Fourth Quarterly Reports, due July 15 and October 15, Safety-Kleen Technical Center will provide the laboratory analytical services for the third The approved Phase I RFI Workplan was conducted on behalf of Safety-Kleen by LTI Laboratories (University Park, Illinois) for the December, 1993 soil sampling event and for The analytical laboratory services were provided by Weston/Gulf Coast

Coast Laboratories, Mateco Drilling Company and John D. Rebik and Associates, as specified in Item #5f in the September 23, 1993 IEPA qualified approval letter to the Appendix A contains general qualifications summaries for LTI personnel, Weston/Gulf Workplan.

3.3 CERTIFICATIONS

the requirements of 35 IAC 702.126 and certifies that the requirements of the September officer of Safety-Kleen and a responsible officer of Weston/Gulf Coast Laboratories meets specifications in the approved RFI Phase I Workplan. The form signed by a responsible engineer certifies that the RFI activities were completed in accordance with the 35I11. Adm. Code Section 702.126 except where noted otherwise. 23, 1993 IEPA approval letter were met during the chemical analyses of all samples, form signed by a responsible officer of Safety-Kleen and LTI's registered professional Workplan, Appendix B contains the signed certification forms provided by IEPA. As specified in Item #5 in the September 23, 1993 IEPA qualified approval letter to the The signatures on these forms meet the requirements of

4. RFI PROCEDURES

4.1 GENERAL

Seven shallow soil borings/monitoring wells (SB4/MW4, SB5/MW5, SB7/MW7, SB8/MW8, SB9/MW9 and SB10/MW10) and one deep depicted in Figure 5. February, 1994 and May, 1994. The locations of the soil borings and monitoring wells are 1993. Quarterly sampling of the monitoring wells was conducted in December, 1993, (SB5deep) were installed and sampled at the CRC from December 6 through December 9, SB5/MW5, soil boring SB6/MW6,

conductivity testing. Color photo areas are presented in Appendix C. presented, followed by a description of the procedures used for in-situ hydraulic first, then the monitoring well installation, sampling and analytical procedures are The procedures used for soil boring installation, sampling and analysis are summarized Color photographs depicting the Phase I activities for the SWMU

4.2 SOIL INVESTIGATION PROCEDURES

4.2.1 Soil Boring Installation

Seven shallow soil borings (SB4, SB5, SB6, SB7, SB8, SB9 and SB10) and one deep soil boring (SB5deep) were installed and sampled at the CRC from December 6 through with the QAPP, as summarized herein. IEPA qualified approval letter. SB10 were added in accordance with Items #21d and #21e in the September 23, 1993 Soil borings SB4 through SB8 were proposed in the Workplan and soil borings SB9 and information regarding the extent and distribution of chemicals in soils and groundwater. Company with a CME-55 drilling rig equipped with 4.5-inch I.D./6-inch O.D. hollow stem December 9, 1993 (see Figure 5). The soil borings were installed by Mateco Drilling The soil borings were installed and sampled to provide geologic data and Soil borings were installed and sampled in accordance

hazards associated with drilling near overhead power lines). placed as proposed in the Workplan and the September 23, 1993 IEPA qualified approval evaluate the possible presence of upgradient sources. Downgradient borings SB6, SB7, to characterize the upgradient extent of chemicals in soils and groundwater, if any, and to letter, with the exception of SB6 (which had to be relocated further to the east to avoid hazardous constituents in soil and groundwater. All of the soil boring locations were SB8, SB9 and SB10 were installed to better characterize the nature and extent of on-site Upgradient borings SB4 and SB5 were installed in the alley on the west side of the CRC

grade, then monitoring wells were installed in all of the seven shallow borings. backfilled with 0.75-inch bentonite pellets (hole plug) to approximately 10 feet below was completed by backfilling with grout to the surface. The seven shallow borings were drilled to an average depth of approximately 20 feet The deep boring was drilled to 60 feet below grade. The shallow borings were Soil boring SB5deep

4.2.2 Soil Sampling, Field Screening and Analysis

to 60 feet below grade with two-feet, two-inch diameter long stainless steel split spoon SB5 (i.e. 20 feet below grade), as recommended in Item #21e in the September 23, 1993 IEPA qualified approval letter. The deep boring was sampled continuously from 20 feet shallow boring SB5; therefore, SB5deep was sampled starting at the completion depth of qualified approval letter. Deep boring SB5deep was installed less than ten feet away from the approved Workplan and Item #21e and Attachment 7 in the September 23, 1993 IEPA stainless steel split spoon samplers equipped with 6-inch brass liners, in accordance with chemical analysis data, and from the deep boring for physical and screening data only The shallow boring soil samples were collected continuously with two-feet long, two-inch Soil samples were collected from the seven shallow soil borings for physical, screening and

characterizations, in accordance with the approved Workplan. to water table, moisture content, Munsell soil color, and grain size and other physical soils sampling interval included standard penetration blow counts, split spoon recovery, depth Soil boring logs were maintained for each boring. The information recorded for each

and to guide selection of soil samples for laboratory analysis. sampling interval. summarizes the background and soil PID results and split spoon recoveries for each soil screening data were recorded for each spilt spoon on the soil boring logs. ionization detector (PID) calibrated to a 99.4 ppm isobutylene standard. Background and All split spoons were field screened for volatile organic compounds (VOCs) with a photo-This information was used to determine the depth of each soil boring

samples were collected from split spoons with high recovery. extruded into a labeled 16-ounce glass jar, sealed with a teflon lid and stored on ice as a candidate sample for laboratory SVOC and metals analyses. metals analyses. field screening, physical descriptions, and semi-volatile organic compound (SVOC) and analysis. The soils in the remaining three brass liners in each spilt spoon were used for ziplock bag and stored on ice inside a cooler as a candidate sample for laboratory VOC brass liners was removed, capped with aluminum foil, placed inside a labeled plastic Immediately after opening each shallow boring split spoon, one of the fullest of the four The soil from one to two brass liners (depending on recovery) was Duplicate VOC and SVOC

larger sample recovery was selected for analyses. occurred in more than one upper fill zone split spoon interval, then the interval with the background was selected for laboratory analyses. If the highest relative PID reading (generally the first 10 feet below grade) with the highest PID reading relative to the upper fill zone and one from the lower clay unit. The interval in the upper fill zone two spilt spoon intervals for each boring were selected for laboratory analysis, one from screening results relative to background readings and sample recovery. A minimum of The completion depth of each boring and the selection of samples for laboratory analyses was determined in the field based on the following criteria: stratigraphic location, field

deeper than approximately 20 feet below grade for this first phase of the subsurface avoid potential carrydown cross-contamination, a field decision was made to drill no and soils in most of the site borings, down to approximately 20 feet below grade. screening results and visual inspection indicated the presence of chemicals in groundwater screening results relative to background readings indicated no soils impacts. Borings were drilled to approximately 20 feet deep, or were terminated shallower if field sampling, then the next shallowest interval was selected. analyses. If soil recoveries from the deepest clay interval were inadequate for laboratory investigations. All soil borings were completed in the clay unit underlying the site fill and silt layers. Soil samples from the deepest clay interval were selected for laboratory

drawing illustrating the vertical sampling locations for each soil boring metals and permeability testing. summarizes the sample intervals that were submitted to laboratories for VOCs, SVOCs, from the clay unit in SB10 was retained for permeability testing. seventeen soil samples were submitted for SVOCs and metals analyses. One brass liner A total of seventeen soil samples were submitted to Weston for VOCs analyses and Figure 6 is a scaled Table 3

4.2.3 Laboratory Methods

in accordance with Item #9 in the September 23, 1993 IEPA qualified approval letter; methyl-2-pyrrolidinone. A TCLP analysis by Method 1311 was conducted to analyze the the SVOC soil samples by Method 8270, including the analytes pyridine, B-picoline and 1trichlorotrifluoroethane. A full base-neutral/acid-extractable analysis was performed on All organic and inorganic analyses for soil samples were conducted in accordance to SW-846 methods and protocols by Weston/Gulf Coast Laboratories, University Park, Illinois. in Ann Arbor, MI for permeability testing. sample from soil boring SB10 was submitted to Professional Service Industries, Inc. (PSI) with the exception that standard TCLP reporting limits were used. In addition, a clay soil samples for arsenic, barium, cadmium, chromium, lead, mercury, selenium and silver, Soil samples were analyzed for VOCs by Method 8240, including tetrahydrofuran and

Tables 4 presents the lists of VOC and SVOC analytes.

4.2.4 QA/QC

samples were submitted to the laboratory with the designations DUP1, DUP2, DUP3 and SVOC soil samples submitted to the laboratory were duplicate samples (duplicate soil opening the spoon. Two of the seventeen VOC soil samples and two of the seventeen air monitoring with a PID, and all split spoon samples were scanned with the PID after Plan (QAPP) submitted with the Workplan. Field screening methods included continuous Quality assurance/quality control measures were conducted in accordance with the appropriate, as documented in the QA/QC review summary (see Appendix E). validation procedures specified in the QAPP A laboratory trip blank accompanied the cooler of VOC samples throughout the sampling event, and was analyzed for VOCs. Data were reviewed in accordance with the data beginning of each day of sampling, and submitted for VOC, SVOC and metals analyses. were collected). Field rinse blanks were collected from decontaminated brass liners at the DUP4; Table 3 identifies the borings and sampling intervals from which the duplicates procedures outlined in the Phase I RCRA Facility Investigation Quality Assurance Project Data qualifiers were added, where

4.2.5 Decontamination

a brush in soapy tap water, then rinsed with tap and de-ionized water prior to use decontaminated spilt spoons. All split spoons were pre-rinsed in tap water, scrubbed with were removed from the foil wrap immediately prior to their use for sampling with the rinsed with reagent grade acetone, methanol and dilute (10%) hydrochloric acid, then given a final rinse with de-ionized water and finally wrapped in aluminum foil. The liners hot soapy (non-phosphate) tap water with a bottle brush, rinsed again in hot tap water, installation of each boring. qualified approval letter. The drilling equipment was steam cleaned prior to the Decontamination measures were conducted in accordance with the procedures outlined in the QAPP, and Items #21x1-x2 and Attachment 7 of the September 23, 1993 IEPA All brass liners were pre-rinsed in hot tap water, scrubbed in

GROUNDWATER INVESTIGATION PROCEDURES

4.3.1 Monitoring Well Installation and Development

upgradient areas and to evaluate the possible presence of upgradient sources. Downgradient monitoring wells MW6, MW7, MW8, MW9 and MW10 were installed to and MW5 were installed in the alley on the west side of the CRC to characterize September 23, 1993 IEPA qualified approval letter. Upgradient monitoring wells MW4 monitoring wells MW9 and MW10 were added in accordance with Item #21d in the the site. Monitoring wells MW4 through MW8 were proposed in the draft Workplan, and provide information regarding the extent and distribution of chemicals in groundwater at December 9, 1993 (see Figure 5). The monitoring wells were installed and sampled to were installed in soil borings SB4 through SB10 at the CRC from December 6 through Seven shallow monitoring wells (MW4, MW5, MW6, MW7, MW8, MW9 and MW10) better characterize the nature and extent of on-site hazardous constituent impacts. All of

the monitoring wells locations were placed as proposed in the Workplan and the September 23, 1993 IEPA qualified approval letter, with the exception of MW6 (which had to be relocated further to the east to avoid drilling hazards associated with overhead

inch diameter, five-feet-long 10-slot stainless steel well screens equipped with 1.5-inch The wells were installed to an average depth of ten feet below ground level. Well construction materials consist of two-inch diameter Schedule 316 steel riser pipe and twofilled with cement to grade. Padlocked steel outer casings and two to three bumper posts screen, then filled with bentonite chips to approximately two feet below ground level, then screen was filled with #7 clean quartz sand to approximately two feet above the top of the stick-up wells. For each monitoring well, the annulus between the borehole and the well flush mounts, and the others (MW-4, MW-5, MW-7, MW-8, MW-9) were completed as installed site monitoring wells, in accordance with Item #21g in the September 23, 1993 stainless steel plugs. All wells were screened in the same stratigraphic zone as previously vertical reference line for static level measurements and capped with a compression fitting protective surface covers. The rim of the inner casing of each well was marked with a were installed around all stickup wells. Flush mount wells were installed with steel IEPA qualified approval letter. Monitoring wells MW-6 and MW-10 were completed as

MW8 and MW10, all of the wells bailed dry throughout development and recharged temperature, pH, turbidity and conductivity. and surged with disposable bailers, and the development water was monitored for in accordance with the procedures outlined in the Work Plan. The wells were developed All seven newly installed monitoring wells were developed December 9 through 20, 1993 With the exceptions of monitoring wells

4.3.2 Groundwater Sampling and Analysis

MW5, MW7, MW8, MW9 and MW10 were sampled for VOCs and SVOCs, and monitoring well MW2 was sampled for 35 IAC 724 Appendix I scan parameters, December, 1993 and May, 1994 sampling events (First Quarter and Third Quarter, respectively), the ten monitoring wells were sampled for VOCs and SVOCs. In the excluding pesticides and herbicides. (Monitoring well MW6 could not be purged or sampled because of ice buildup inside the walls of the inner casing). February, 1994 sampling event (Second Quarter), monitoring wells MW1, MW3, MW4 the September 23, 1993 and December 20, 1993 IEPA qualified approval letters. MW2 and MW3) were sampled quarterly in December, 1993, February, 1994 and May, 1994, in accordance with the procedures and schedules presented in the Workplan and in The newly installed monitoring wells and the three existing site monitoring wells (MWI,

For each sampling event and prior to sampling, each monitoring well was screened with a the September 23, 1993 IEPA qualified approval letter. Static level data was collected fluids with a dual interface probe, according to the procedures specified in Item #21m in PID immediately after opening the inner well casings. Each well was tested for immiscible

casing volumes of groundwater and purge water was monitored for temperature, pH and from all site monitoring wells prior to sampling. conductivity data. All wells were purged of at least three

4.3.3 Laboratory Methods

by Method 8270, including the analytes pyridine, B-picoline and 1-methyl-2-pyrrolidinone base-neutral/acid-extractable analysis was performed on the SVOC groundwater samples for VOCs by Method 8240, including tetrahydrofuran and trichlorotrifluoroethane. A full for the First and Second Quarter sampling events. Groundwater samples were analyzed 846 methods and protocols by Weston/Gulf Coast Laboratories, University Park, Illinois All groundwater organic and inorganic analyses were conducted in accordance with SW-Table 4 presents the lists of groundwater VOC and SVOC analytes.

included in the Appendix I scan. Appendix I parameters for monitoring well MW2. As stipulated in Item #21c in the September 23, 1993 IEPA qualified approval letter, pesticides and herbicides were not response to proposed modifications). Table 5 presents the list of organic and inorganic the September 23, 1993 IEPA qualified approval letter and the December 20, 1993 IEPA protocols by Weston/Gulf Coast Laboratories, University Park, Illinois (see Item #21c in during the second Quarter sampling event, in accordance with SW-846 methods and Monitoring well MW2 was sampled for an abbreviated 35 IAC 724 Appendix I scan

4.3.4 QA/QC

appropriate, as documented in the QA/QC review summary (see Appendix E). throughout each sampling event, and was analyzed for VOCs (the trip blank for the and submitted for VOC and SVOC analyses. the data validation procedures specified in the QAPP. Data qualifiers were added, where Second Quarter sampling event broke in transit). Data were reviewed in accordance with sampling event, a laboratory trip blank accompanied the cooler of VOC samples Quarter sampling event). Field rinse blanks were collected from clean disposable bailers, MW2 was sampled in duplicate for all the required Appendix I analyses during the Second was submitted to the laboratory during each quarterly sampling event (monitoring well given well and not used between wells. A duplicate groundwater sample for each analysis each well, one for purging and one for sampling. The bailers were discarded after use at a immediately after opening the wells. Two clean, unused disposable bailers were used at air monitoring with a PID, and all monitoring wells were scanned with the PID Plan (QAPP) submitted with the Workplan. Field screening methods included continuous procedures outlined in the Phase I RCRA Facility Investigation Quality Assurance Project Quality assurance/quality control measures were conducted in accordance with the With the exception of the Second Quarter

4.3.5 Decontamination and Waste Disposal

through their normal waste handling practices. and decontamination fluids were properly containerized and disposed of by Safety-Kleen the September 23, 1993 IEPA qualified approval letter. All development and purge water Non-disposable groundwater sampling equipment that was used between wells was decontaminated in accordance with the procedures outlined in the QAPP and Item #21x in

4.3.6 Surveying

points were surveyed to a City of Chicago benchmark and converted to USGS datum monitoring wells and three piezometers, and the elevations of the five surface reference December, 1993. Top of casing and ground elevations were surveyed for the ten P3) and five surface reference points were surveyed by John D. Rebik & Associates in The locations of all ten site monitoring wells, the three existing piezometers (P1, P2 and

4.4 IN-SITU HYDRAULIC CONDUCTIVITY TESTING

MW6 could not be tested because of ice buildup inside the inner casing walls. Monitoring could be tested because of excessively slow recharge to these wells during sampling, and monitoring wells MW1, MW3, MW6 and MW8 would be tested, neither MW1 or MW3 tested for in-situ hydraulic conductivity data. well MW2 was tested instead of MW3 and monitoring well MW9 was substituted for During the Second Quarter sampling event, monitoring wells MW2, MW8 and MW9 were Although the Work Plan stated that

manually with an electronic water level probe prior to the tests pressure transducer and two-channel In-Situ Hermit data logger were used to record the monitoring well MW8; and one pneumatic rising head test was conducted at MW2. tests, one solid slug rising head test and one solid slug falling head test were conducted at rising head tests were conducted at monitoring well MW9; two pneumatic rising head data generated throughout the tests. Static water level measurements were collected in accordance with the procedures outlined in the approved Work Plan. Two pneumatic Both solid slug and air slug (pneumatic) methods were used to test the monitoring wells,

5. RFI RESULTS

groundwater investigations and hydraulic conductivity testing. approval letter, the following sections present the results of the Phase I soil investigations As specified in Items #5, #19, #20 and #21 of the September 23, 1993 IEPA qualified

5.1 RESULTS OF SOIL INVESTIGATIONS

procedures are presented in Appendix E. and metals results are summarized in Tables 6 and 7, respectively. submitted to IEPA January 27, 1994. The unvalidated and validated soils VOC, SVOC custody forms (COCs) for the soils analyses were included in the First Quarterly Report, Soil boring logs are presented in Appendix D. The laboratory data sheets and chain-of-Data validation

RESULTS OF GROUNDWATER INVESTIGATIONS

presented in Appendix H. presented in Appendix G. IEPA well construction diagrams are presented in Appendix F. Well development logs are Wellhead screening data and groundwater sampling data are

the modified Appendix I analyses for monitoring well MW2 are summarized in Table 10 investigations). Data validation procedures are presented in Appendix E. The results for included in the First and Second Quarterly Reports, submitted to IEPA January 27 and and discussed in the next section. The results from the May, 1994 sampling event will be provided in the July, 1994 Third Quarterly Report to IEPA. The laboratory data sheets Historic static water level data and well construction information are summarized in Table April 14, 1994, respectively. The unvalidated and validated results are summarized in and COCs for the December, 1993 and February, 1994 groundwater sampling events were The results from the December, 1993 and February, 1994 sampling events are summarized and 9, respectively (these tables include laboratory results from pre-1993

S RESULTS OF IN-SITU HYDRAULIC CONDUCTIVITY TESTING

penetrating wells in unconfined aquifers. Results of the hydraulic conductivity calculations conductivity testing are presented in Appendix I. are summarized in Table 12 field data and calculation spreadsheets generated from the in-situ hydraulic performed using the Bouwer-Rice method of slug test analysis for partially Calculations of hydraulic conductivity

DATA EVALUATION AND DISCUSSION OF RESULTS

6.1 GENERAL

evaluations of the extent and distribution of constituents identified in soil and including a description of the regional and site specific geology and hydrogeology, and letter, this section presents a discussion of the results of the Phase I investigation, groundwater. As specified in Items #5, #19 and #20 of the September 23, 1993 IEPA qualified approval

GEOLOGIC AND HYDROGEOLOGIC EVALUATIONS

or supplemented as necessary, based on information acquired since submittal of the First following sections include excerpts from the literature review, which have been modified stratigraphy was submitted with the First Quarterly Report, dated January 27, 1994. The literature As stipulated in Item #21a in the September 23, 1993 IEPA qualified approval letter, a Quarterly Report survey of regional geologic and hydrogeologic characteristics and local

6.2.1 Regional Geology

the bottom of glacial Lake Chicago, and covers an area of approximately 450 square The City of Chicago lies in the Chicago Lake Plain subdivision of the Great Lakes Section of the Central Lowland Province (ISGS Circular 460, 1971). The Chicago Lake Plain was miles, 90 percent of which is covered by built-up areas of Chicago and its suburbs (ISGS Circular 460, 1971).

glaciolacustrine surface deposits, whereas surface deposits in the western, northern, and southwestern areas of Cook County consist of a series of glacial moraines. The well-sorted beach ridges associated with former Lake Chicago shorelines. glaciolacustrine deposits associated with the Chicago area consist mainly of moderately well sorted clay, silt, and sand. Chicago area glaciolacustrine deposits also contain some Cook County is covered by a variety of unconsolidated stratified and unstratified glacial The geomorphological features of the Chicago area are largely the result of glaciation. glaciofluvial, and glaciolacustrine deposits. The Chicago area contains mostly

surface because they are situated on a regional northwest-southeast trending Paleozoic Niagaran dolomite of Silurian age. Consolidated deposits subcrop in proximity to the Underlying the unconsolidated glacial deposits of Cook County are consolidated Devonian, Silurian, Pennsylvanian, Ordovician, and Cambrian deposits of limestone, Era geologic high, the Kankakee Arch. shale, coal, and sandstone. The Kankakee Arch connects the Wisconsinan Virtually all outcrops in Cook County are of

fifteen feet per mile in the Chicago area. depressions on either side, the Michigan Basin to the north and the Illinois Basin to the Stage Arch (northwest) and Cincinnati Arch (southeast), and separates two large geologic south. The gently sloping eastern flank of the Kankakee Arch dips to the east about ten to

6.2.2 Site Geology

borings, regional supply wells and information from eight site borings installed in one deep boring (SB5deep) was characterized continuously from twenty to sixty feet were characterized continuously to a maximum depth of twenty-one feet below grade, and extending to a depth of twenty feet. The seven shallow 1993 borings (SB4 through SB10) December, 1993. The 1991 borings were drilled to a depth of ten feet, with one boring The site geology has been characterized by information from ten 1991 shallow on-site soil below grade.

of Tank Farm #3 and geologic profile D-D' trends north -south along the west side of south and north, respectively, of Tank Farm #3 and extending to the west side of Four vertical geologic profiles depicting the site stratigraphy are presented in Figures 8, 9, Container Storage Area #1. Container Storage Area #1. Geologic profile C-C' trends north-south along the east side 7.) Geologic profiles A-A' and B-B' are oriented east-west across the site, immediately 10 and 11. (A map illustrating the horizontal traces of the profiles is presented in Figure

fifty-two to sixty feet below grade, soils are predominantly dark gray, very hard and stiff, slightly silty, finely-laminated lakebed clays, with some finely disseminated iron-sulfide information from the deep regional supply well borings contact, which was inferred to exist at approximately fifty feet below grade based on were recovered below sixty feet at the site to confirm the unconsolidated/consolidated grains and subangular to subrounded shale and limestone/dolomite gravel and clasts. saturated, loose silty mud was encountered at 50.5 feet below grade. From approximately the clay was deposited in an oxygen-deficient (reducing) environment. A thin (less than 1 grains and a piece of undecomposed wood were documented in the clay, indicating that with trace to some coarser material consisting of silt, fine sand, and fine to coarse from a silty clay into predominantly stiff, plastic dark-grayish brown finely-laminated clay, approximately ten feet and down to approximately fifty-two feet below grade, soils grade clay. Based on the geologic information obtained from deep soil boring SB5deep, below average of five to six feet (up to thirteen feet) of apparently indigenous clayey silt to silty composed of sand, gravel, soil, concrete, and wood debris. Below the fill layer there is an unconsolidated deposits consist of an upper fill layer, between one and seven feet thick, glaciolacustrine origin overlay consolidated deposits of the Paleozoic Era at the site. The Because of difficulty in driving the spilt-spoon through this very hard clay, no soil samples The horizontal extent of this saturated unit is unknown. Approximately fifteen inches of foot thick) saturated muddy sand is located at approximately 37 to 38 feet below grade. limestone/dolomite and shale gravel and clasts. Trace amounts of iron-sulfide sand-sized The geologic profiles illustrate that over 60 feet of unconsolidated sand, silt, and clay of

another elevation high exists on the southern end of Container Storage Area #1. The two indicate that a subsurface high exists in the vicinity of Tank Farm #3, where the elevations clay/base of the clayey silt zone is represented in Figure 14. These figures generally the elevation of the base of the fill zone. The interpreted elevation of the top of the depicts the interpreted elevation of the top of the clayey silt zone, which is analogous to groundwater flow at the site, as discussed in Section 6.3.2 below. These elevation features at the top of the lower clay unit may influence the direction of which trends approximately north south through the center of the area of investigation structural highs at the top of the lower clay unit appear to be separated by a linear low, thickness of the overlying fill unit is thinnest. The clay elevation map indicates that of both the top of the clayey silt unit and the lower clay unit are highest, and where the Figure 12 illustrates the interpreted distribution of the thickness of the fill layer. Figure 13

6.2.3 Regional Hydrogeology

water for industry. The City of Chicago obtains its potable water from Lake Michigan, formations, and the Mt. Simon aquifer consisting of the Mt. Simon-Eau Claire sandstone the Galena-Platteville dolomite, St. Peter sandstone, and Ironton-Galesville sandstone dolomite aquifers mainly of Silurian age, the Cambrian-Ordovician aquifer composed of four aquifer or saturated systems: glacial drift saturated or water bearing units, shallow withdrawing over one billion gallons per day (ISGS, 1984). The groundwater resources of Chicago and surrounding Cook County are developed from Water wells exist in the city, but are used mainly for process and cooling

yields on the order of 1000 gpm, and an average transmissivity of about 330 feet²/day (USGS, 1988). Local conditions can vary significantly from the above estimates because glacial drift saturated units tend to be heterogeneous and anisotropic in nature The uppermost glacial drift water bearing unit is unconfined, and has common regional

north of the six-county metropolitan area (where rocks crop out at the surface or lie immediately below the glacial drift toward the structural basins in the south and east deep bedrock units tends to be mainly horizontal, from recharge areas to the west and reduced the area of drainage into Lake Michigan (ISGS Circular 460, 1971). Flow in the two miles to the north of the site. Lake Michigan provides a regional discharge boundary the site. The south branch of the Chicago River is a possible regional recharge boundary surface water bodies probably function as regional recharge and discharge boundaries for through the Illinois and Mississippi Rivers (ISGS, Circular 460, 1971). (ISGS Circular 460, 1971; USGS Professional Paper 1405, 1992). four miles to the east of the site.; however, man-made surface water diversions have St. Lawrence by way of the Great Lakes and those that flow to the Gulf of Mexico The Chicago area is on the major drainage divide between waters that flow to the Gulf of

6.2.4 Site Hydrogeology

of Tank Farm #3. The saturated thickness generally is five to six feet throughout most of #1, near monitoring wells MW8 and MW10, and in the vicinity of MW2 on the north side thickness appears to be greatest in the vicinity of the north end of Container Storage Area shallow unconfined zone varies between approximately five and eight feet. The saturated approximately ten feet below grade throughout the site. The saturated thickness of the The base of the shallow saturated zone is defined by the clay unit which occurs at fill layer. The water table extends up into the fill zone in parts of the investigation area. which is comprised primarily of the clayey silt/silty clay unit underlying the non-indigenous the site investigations. In general, a shallow unconfined saturated unit exists at the site The water table was encountered at approximately three to five feet below grade during the investigation area.

modified, if necessary, based on any newly acquired information. subsurface structures are known to exist at the site, which may influence groundwater somewhat from the December, 1993 and May, 1994 interpretations, and because surface for December 16, 1993, February 14, 1994 and May 25, 1994, respectively and south. Figures 15, 16 and 17 illustrate preliminary interpretations of the water table the 1991 data on the west side of the site, and provide additional information to the east site in an eastwardly direction, away from an apparent groundwater mound in the vicinity of Tank Farm #3. The static water level data collected during the RFI are consistent with groundwater flow in the shallow water table aquifer was determined to move across the According to static water level data collected in previous investigations (Canonie, 1991) from monitoring wells MW1, MW2, and MW3 and piezometers P1 through P4, determined from the available information. The potentiometric surface maps will be flow direction. These figures are preliminary because the February, 1994 potentiometric surface differs The locations and extent of these subsurface structures has not been

direction of groundwater flow ultimately moves to the north, away from the vicinity of in the vicinity of Tank Farm #3, and, to the east of this water table mound, groundwater flow appears to converge from the east, south and west towards Tank Farm #2 and away to confirm this initial interpretation. from Container Storage Area #1. seasonally in response to precipitation. A water table mound appears to exist consistently saturated zone varies across the site. The interpreted static level data indicates that groundwater flow direction in the shallow Tank Farm #2; however, additional information is needed to the north of Tank Farm #2 The potentiometric surface maps indicate that the In addition, flow directions appear to change

upper portion of the saturated zone, inside the remains of the demolished dike wall); the water table at P1 could be due to factors including (1) the presence of vertical because of an obstruction in P1 that prevented data collection. The apparent mounding of however, this could not be confirmed during the February and May, 1994 sampling events elevation exists in the vicinity of piezometer P1 (which is screened at the water table in the The December 1993 static water level data indicate that the shallowest water table

wall around Tank Farm #3, and/or (3) influence from the underlying structural high at the top of the lower clay unit. These issues will be investigated further during future investigations, as recommended in Section 7.2 of this report. top of the lower clay unit. groundwater gradients, (2) the surrounding influence of the foundation of former dike

database is not extensive enough at this time to evaluate seasonal trends to the water table February static level data for MW4, MW5 and MW9 was over one foot lower than at MW1 than in the December, 1993 and May, 1994 sampling events, and approximately February, 1994 sampling event, the deepest water table elevation at the site shifted to the potentiometric surface are consistent, and appear to reflect the subsurface elevation of the other data sets, preliminary interpretations indicate that the general trends to the flow field. Despite the differences in the February, 1994 static level data relative to the table to the frost line, may have resulted in anomalous perturbations in the groundwater Alternatively, the unusually cold winter in 1994, combined with the proximity of the water may account for the differences in the February, 1994 static level data, however, the corresponding well data collected in December, 1993 and May, 1993. Seasonal variations vicinity of MW10. The February 14, 1994 water table was approximately 1.5 feet higher determined from the December, 1993 and May, 1994 static level data. The deepest water table elevation at the site occurred in the vicinity of MWI, as top of the lower clay unit. 1.5 feet lower at MW10 than in the December, 1993 and May, 1994 sampling events. The

by either the February or May, 1994 data sets. adjacent to the east side of the alley (MW2 and MW9); however, this was not confirmed in the vicinity of the sewer, relative to water levels in monitoring wells immediately sewer line (MW4 and MW-5) preliminarily indicated that water levels were slightly lower December 1993 static water level data from the two monitoring wells that straddle the Chicago personnel about the history, dimensions and construction of this sewer. The the direction of groundwater flow at the site. No information is available from City of Safety-Kleen and Ashland Cold Storage is another buried obstruction that may influence The private sewer line that runs parallel to the western side of the site in the alley between

below grade at SB10/MW10. Literature values of hydraulic conductivities measured in hydraulic conductivity value of 2.4 x 10-8 cm/sec in the clay interval from 14.5 to 15 feet test conducted on the clay sample collected from soil boring SB10 indicates an average 10-5 in the vicinity of MW2 (Tank Farm #3). The result of the laboratory permeability cm/sec in the vicinity of MW8 (Container Storage Area #1); and approximately 2.46 x 2.67×10^{-4} to 2.97×10^{-4} cm/sec in the vicinity of MW9; 4.26×10^{-4} to 8.16×10^{-4} hydraulic conductivity tests indicate local hydraulic conductivity values in the range of were expected to be less than 10-3 cm/sec (21 gpd/ft²). The results of the in-situ Based on soil type, the hydraulic conductivity's of the silt and clay layers beneath the site wells bailed dry during development and purging prior to sampling, and recovered slowly estimates. With the exceptions of monitoring wells MW8 and MW10, all site monitoring Yields and transmissivities in the vicinity of the CRC are much lower than regional

characteristic of the soil types encountered at the site. clays range from 0.0002 to 0.2 gpd/foot² (9.43 x 10⁻⁹ to 9.43x 10⁻⁶ cm/sec) (Fetter silts generally range from 0.2 to 21 gpd/foot² (9.43 x 10^{-6} to 9.9 x 10^{-4} cm/sec), and in therefore, the hydraulic conductivity tests results are consistent with values

underlying regional dolomite aquifer is likely poor. The results of the soils tests indicate hydraulic communication, if any, between the local glacial drift water bearing unit and the Due to the presence, thickness and low hydraulic conductivity of the lower clay unit, the approximately ten feet into the lower clay unit (see discussion in Section 6.4.1 below). soils impacts appear to be present down to a depth of twenty feet below grade,

DETECTED CHEMICALS, EXTENT AND DISTRIBUTION

September 23, 1993 IEPA qualified approval letter. distribution, as determined from the data collected to date. detected in soils and groundwater during the site investigations, and their extent and discussed relative to the SWMU areas, as required by Items #7, #5a, #5g and #19o in the The following sections discuss the types of organic and inorganic chemicals that were In addition, the results are

6.3.1 Chemicals Detected in Soil

defined by the QA/QC validation procedures outlined in Appendix E. Some of these to the J-qualifiers found in Tables 6 and 7. The additional data qualifiers in Table 7 are soils investigations, and the concentrations and occurrences of these detected compounds personal communication). Table 13 lists the compounds that were detected during all that naturally occurs in Illinois soils at concentrations as high as 805 mg/kg (ISGS, were detected in the soil TCLP samples with the exception of barium, which is a metal Area #1, and in the southwest corner of the CRC property. No inorganic compounds compounds; were required to quantify those soils containing higher were exceeded for some of the final soils re-analyses because of the number of tests that soils samples several times to achieve the lowest possible reporting limits. Holding times additional qualifiers resulted from the necessity of the laboratory to re-analyze some of the Some of the 1993 values summarized in Table 13 are approximations, which correspond northwest corner of Tank Farm #3, along the north and west side of Container Storage however, the analyses were otherwise normal and the data can be used Organic compounds were detected in soil samples collected off the concentrations of organic

needed north of Container Storage Area #1. throughout most of the area of investigation; however, additional confirmatory sampling is detected in soils appears to occur down to approximately twenty feet below grade compounds are present in the soil and groundwater. sections of the area of investigation indicate that volatile and semi-volatile organic Tank Farms #2 and #3 and Container Storage Area #1, and in the central and eastern the southern and western side of the area of investigation. The soils in the area north of In general, the horizontal extent of chemicals detected in soils has been determined along The vertical extent of chemicals

Summary of Organic Compounds Detected in Soils samples collected in 1993, as listed in Table 13. VOC analytes and twenty-eight of the 69 total SVOC analytes were detected in site soil Twenty-four of the

VOCs

ranged from 4 mg/kg to less than 10 mg/kg in SB4 (16.5'-17'), SB7 (8'-8.5'), SB8 (7.5'-8.5') and SB10 (7.5'-9'). Total VOCs were detected at concentrations less than or equal to 0.12 mg/kg in SB4 (17'-18'), SB5 (8.5'-9.5'), SB5 (18.5'-20'), SB6 (6'-7'), SB6 (17.5'-18.5'), SB9 (8'-9'), SB9 (17.5'-18') and SB9 (18'-19'). were significantly lower, ranging from 31 mg/kg to less than 50 mg/kg in SB4 (5'-6'), SB7 (11.5'-12'), SB8 (19.5'-20') and SB10 (17.5'-18.5'). Total VOCs concentrations highest concentration of total VOCs that occurred in a single soil sample was detected in SB8 (17.5'-18.5') at 326 mg/kg, and the lowest total VOC concentration occurred in SB5 Detected VOCs in soils consisted of chlorinated and non-chlorinated hydrocarbons. (18.5'-20'), which was non-detect for VOCs. The next highest total VOCs concentrations

SVOC

to 0.42 mg/kg in SB4 (17'-18'), SB5 (8.5'-9.5'), SB5 (9.5'-10'), SB6 (6'-7'), SB6 (17.5'-18.5'), SB8 (17.5'-18.5') and SB9 (18'-19'). SVOCs were not detected in soil samples SB5 (18.5 -20'), SB8 (19.5'-20') and SB10 (17.5'-18.5'). The highest concentrations of total SVOCs occurred in SB4, (5'-6'), SB7 (8'-8.5') and SB8 (7.5'-8.5'), at 12 mg/kg, 10 mg/kg and 12 mg/kg, respectively. Soil borings samples SB7 (11.5'-12'), SB7 (12.5'-13'), SB9 (8'-9') and SB10 (7.5'-9') had total SVOCs concentrations ranging between 2.7 and 5.4 mg/kg. Total SVOCs were less than or equal

respectively. Barium is not a compound handled by Safety-Kleen, and naturally occurring concentrations of 0.72 mg/l, 0.75 mg/l, 1.3 mg/l, 0.69 mg/l, 0.87 mg/l and 1.8 mg/l, Summary of Inorganic Compounds Detected in Soils levels of barium have been detected between 395 to 805 mg/kg in Illinois soils (ISGS TCLP extract analyses indicate that barium was the only metal detected above reporting SB6 (17.5'-18.5'), SB7 (11.5'-12'), SB7 (12.5'-13') and SB9 (8'-9'), at These detections of barium occurred in soil samples SB4 (17'-18'), SB5(18.5'-The RFI results of the soils

acetopnenone were detected only once out of three sampling events and the concentrations of 2-methylphenol, benzoic acid, pyridine, 3-picoline, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide have varied. benzyl alcohol, 1,2-dichlorobenzene, 4-methylphenol, 2,6-dinitrotoluene

detected in MW2 were detected in groundwater samples collected from MW4. These compounds are: vinyl chloride, methylene chloride, 1,1-DCA, 1,2-DCE (total), chloroform, 2-butanone., 1,2-dichloropropane, TCE, benzene, toluene, ethylbenzene and total xylenes. In addition, chloromethane, 4-methyl-2-pentanone and tetrahydrofuran MW4, located immediately west of MW2. Twelve of the twenty-one VOCs historically Sixteen VOCs and four SVOCs were detected in groundwater samples collected from 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide. historically detected in MW2 have been detected in MW4: 4-methylphenol, , 3-picoline detected in MW4 in the Second Quarter sampling event. were detected in MW4 in the first two quarterly sampling events, and chloroethane was Four of the eleven SVOCs

MW5: 1,1-DCA at up to 0.016 mg/l, benzene at approximately 0.003 mg/l and tetrahydrofuran at up to 0.096 mg/l. No SVOCs were detected in MW5 during the RFI exists in the vicinity of MW5. sampling events. therefore, a southwestern limit to groundwater chemicals appears to Further south and west of MW4, low concentrations of three VOCs were detected in

in concentration over time. 3-picoline, 1-methyl-2-pyrrolidinone and N,N-dimethylacetimide generally have increased Of the twenty organic compounds detected in MW3, acetone, tetrahydrofuran, pyrridine, six VOCs detected in MW3, benzene generally has decreased in concentration over time correspond to compounds detected in groundwater samples collected from MW2. Of the detected historically in MW3. Four of the six VOCs and six of the fourteen SVOCs pyridine, 3-picoline, 1-methyl-2-pyrrolidinone and N,N-dimethylacetamide) have been fourteen SVOCs (phenol, 2-methylphenol, 4-methylphenol, 2,4-dimethylphenol, naphthalene, 2-methylnaphthalene, acenaphthene, dibenzofuran, fluorene, phenanthrene, Northeast of MW2 (north of and between Tank Farms #2 and #3), six VOCs (acetone, (total), benzene, 4-methyl-2-pentanone, toluene and tetrahydrofuran) and

tetrahydrofuran has varied in concentration over time. Methylene chloride, acetone, 1,1,1chloride, acetone, 1,1-DCA, 1,2-DCE (total), benzene and toluene; have decreased in concentration over time are vinyl chloride, chloroethane, methylene groundwater samples collected from MW1. Of the fifteen VOCs, those that generally South of Tank Farm #2, fifteen VOCs and eight SVOCs were detected historically in three sampling events. TCA, 4-methyl-2-pentanone, PCE, xylenes and ethylbenzene were detected only once in whereas,

concentrated VOC detected in MW9 was approximately 0.5 mg/l tetrahydrofuran; detected at low concentrations (less than 0.6 mg/l) in MW9. The more highly In the southwest corner of the area of investigation, nine VOCs and three SVOCs were

Second Quarter sampling events). approximately 0.007 mg/l 1-methyl-2-pyrrolidinone (both detected during the First and (detected in the First Quarter sampling event) and up to 0.015 mg/l 3-picoline and up to three SVOCs detected in MW9 are: approximately 0.001 mg/l bis(2-ethylhexyl)phthalate whereas the other eight VOCs were detected at concentrations less than 0.08 mg/l.

tetrahydrofuran were consistent between the two sampling events; area, in the vicinity of monitoring well MW8. Up to twenty VOCs and up to six SVOCs were detected in MW8 during the first two quarterly sampling events. Of the detected Phase I results indicate that the area in the vicinity of the Container Storage Area #1 the two sampling events. butanone, carbon tetrachloride, TCE, benzene, PCE, chlorobenzene decreased between two sampling events; and the concentrations of 1,1-DCE, chloroform, 1,2-DCA, 2acetone, 1,2-DCE (total), 1,1,1-TCA and trichlorotrifluoroethane increased between the VOCs, the concentrations of vinyl chloride, methylene chloride, 1,1-DCA, toluene and concentrations of chemicals in groundwater occur in the northwestern end of this SWMU SWMU may be a source of constituents in soils and groundwater at the CRC. The highest RFI Groundwater Results in the Vicinity of Container Storage Area #1 the concentrations of

south along the west side of Container Storage Area #1. Up to fourteen VOCs and up to eight SVOCs were detected in monitoring well MW10. Up to fourteen VOCs and up to and/or MW10, with the exception of isophorone. Phenol, 2-methylphenol, 2,4-dimethylphenol, benzoic acid, naphthalene and 4-chloro-3-methylphenol are additional ethylbenzene are two additional VOCs that were detected in both MW7 and MW10 that DCA, carbon tetrachloride, TCE, were detected in MW7 and/or MW10, with the exception of 1,1-DCE, chloroform, 1,2eight SVOCs were detected in monitoring well MW7. All of the VOCs detected in MW8 Fewer organic compounds were detected in groundwater samples collected further to the SVOCs that were detected in either MW7 and/or MW10 that were not detected in MW8 were not detected in MW8. All of the SVOCs detected in MW8 were detected in MW7 PCE and chlorobenzene. Chloroethane

groundwater on the west side of Container Storage Area #1 is in the vicinity of monitoring (and groundwater flow patterns) indicate that the southern extent of chemicals in groundwater on the want and a formula of the groundwater on the want and a formula of the groundwater on the want and a formula of the groundwater on the want and a formula of the groundwater on the want and a formula of the groundwater on the want of the groundwater of the want of the groundwater of the groun groundwater is 6 mg/l tetrahydrofuran in the vicinity of monitoring well MW6 Data from the first quarter sampling event indicates that the only VOC present in

7. CONCLUSIONS AND RECOMMENDATIONS

7.1 CONCLUSIONS

The following conclusions are drawn from the results of the RFI:

- distribution of chemicals in soils and groundwater at the site; #1; preliminary Phase II information was collected regarding the extent and present in the vicinities of Tank Farms #2 and #3, and Container Storage Area The objectives of the Phase I RFI were achieved: and distribution of fill material present in the area of investigation has been determined. chemical constituents are and the extent
- Significant variations in groundwater flow direction due to seasonal changes or the subsurface structure of the clay unit underlying the saturated zone. Groundwater flow directions vary across the site and appear to be related to responses to precipitation are indicated.
- side of the site, in the vicinity of SB5/MW5, and contains a thin saturated muddy silt zone at approximately 37 to 38 feet below grade and a thin investigation. The clay exists as deep as sixty feet below grade at the western occurs at an average depth of ten feet below indigenous fill or topsoil material, underlain by up to thirteen feet of clayey saturated silty mud zone at 50.5 feet below grade. dark-grayish brown finely-laminated lakebed clay. silt/silty clay material which grades downward into a laterally extensive stiff, Soils at the site are comprised of approximately one to seven feet of nongrade across the The top of the clay unit area of
- area of investigation. The fill material is thinnest in the vicinity of Tank Farm and the lower clay unit. #3, where it overlies a subsurface mounding in the clayey silt/silty clay zone The horizontal extent of the non-indigenous fill zone occurred throughout the
- shallow, unconfined saturated zone below the water table is comprised of the fill material and clayey silt to silty clay soils overlying the lower clay unit A water table exists at approximately 3 to 5 feet below grade at the site.
- withdrawal wells are known to exist within 1500 feet of the CRC The shallow saturated zone is not used as an aquifer at the site, and no water
- Hydraulic conductivity values for the saturated clayey silt/silty clay zone range from 2.46×10^{-5} cm/sec to 8.16×10^{-4} cm/sec, and an average hydraulic conductivity value for the clay is 2.4×10^{-8} cm/sec.

- that chemicals resulting from site releases are present in the bedrock aquifers Regional bedrock aquifers underlie the lower clay unit. There is no evidence
- Chemical constituents were detected in shallow soils and groundwater in the detected in groundwater samples collected from monitoring well MW2. groundwater samples; (comparable vicinities of the SWMU to Illinois background levels) were detected in no PCBs, sulfides, cyanide, dioxins, furans were areas: VOCs and SVOCs and some metals soils
- western extents are fairly well defined. extent and distribution of chemicals in soils and groundwater; the southern and Further investigations are needed to determine northern and eastern horizontal
- The vertical distribution of soils (and groundwater) impacts is fairly well defined, and is limited to a depth of 20 feet below grade throughout most of the vicinity of Container Storage Area #1. the area of investigation. Some additional confirmatory sampling is needed in

7.2 RECOMMENDATIONS FOR ADDITIONAL SITE ACTIVITIES

distribution of chemicals in soil and groundwater. Additional activities are proposed for the CRC to supplement the hydrogeological information obtained from the Phase I RFI and to further determine the extent and

7.2.1 Proposed Phase II Hydrogeological Investigations

chemicals in soil and groundwater north of the Phase I area of investigation. groundwater flow direction, to determine site characteristics and extent and distribution of proposed additional activities are: investigations are recommended to better define potential influences The

- continued quarterly monitoring of static water level data from existing site
- groundwater gradients in the saturated zone in the vicinity of Tank Farm #3; installation of several piezometer clusters to determine the presence of vertical
- shallow saturated zone; one-day pumping test to determine the feasibility of long-term pumping in the
- ٠ to aid in the placement of additional monitoring wells, if necessary, groundwater on the northern and eastern sides of the area of investigation and rapid screening analyses to characterize the extent of chemicals in soil and

installation and sampling of additional monitoring wells, if necessary

further characterize the response of the saturated unit to stress. gradient information. of the groundwater mound located at Tank Farm #3, to collect vertical groundwater piezometers can be installed as clusters to monitoring wells and piezometers in the vicinity determine potential seasonal influences to groundwater flow direction. In addition, several Continued quarterly monitoring of static water levels in existing site wells would help to Container Storage Area #1 would provide preliminary hydrogeologic information to A one-day pump test in the vicinity of Tank Farm #2 and west of

resorting to high reporting limits during the confirmatory laboratory sampling phase. groundwater data throughout the CRC within a few days, and minimize the potential of would eliminate the problems encountered with the PID, provide quantitative soils and screening data for soils and groundwater. The use of an onsite GC for field screening a field GC is an effective mechanism to rapidly acquire extensive and fairly reliable VOC site impacts have been determined from the geoprobe results. A geoprobe equipped with groundwater sampling and laboratory analysis once the vertical and horizontal limits of impacts; and, the second part of the investigation would consist of confirmatory soils and to preliminarily determine onsite the extent and distribution of soils and groundwater collected in a two-part approach: the first part would consist of a geoprobe investigation expeditiously and cost effectively. during the Phase I investigation activities, and to collect the required information this objective are designed to take into account the problems and limitations recognized soils and groundwater impacts detected at the site. The proposed activities to accomplish Additional information is required to further define the vertical and horizontal limits of Specifically, the additional information would be

monitoring wells will be proposed, if necessary, based on the results of the geoprobe and groundwater samples would be collected and analyzed at a laboratory. determined preliminarily by the geoprobe investigation, additional confirmatory soils and investigated with the geoprobe. confirmatory sampling investigations. Both the horizontal and vertical extent of soils and groundwater impacts would be Once the vertical and horizontal limits have been

approval of these recommendations descriptions of the activities proposed above, upon receipt of IEPA's comments on or Safety-Kleen proposes to prepare a work plan for the Phase II investigations to include

REFERENCES

Corporation, Chicago, Illinois., 1991 Canonie. Supplemental Investigation Report, Chicago Recycle Center, Safety-Kleen

Fetter, C. W. Applied Hydrogeology. Macmillan, New York, NY, 1988

Chicago Recycle Center, March, 1990. Illinois Environmental Protection Agency, RCRA Facility Assessment, Safety-Kleen

Permit, Safety-Kleen Chicago Recycle Center, September, 1992 Illinois Environmental Protection Agency, RCRA Hazardous Waste Management Part B

Illinois State Geological Survey, 1984. Potential for Contamination of Shallow Aquifers and Natural Resources. Circular 532. State Geological Survey Division, Illinois Department of Energy

Illinois State Geological Survey, 1971. Summary of the Geology of the Chicago Area. Education. Circular 460. State Geological Survey Division, Illinois Department of Registration and

levels of trace metals in Illinois surface soils, June 1994. Illinois State Geological Survey, personal communication with Dr. Joyce Frost regarding

trace materials in Illinois/near Chicago area groundwater, June 1994. Illinois State Water Survey, personal communication with Brian Kysor regarding levels of

Limno-Tech, Inc., RCRA Facility Investigation Phase I Work Plan, Safely-Kleen Corporation, Chicago Recycle Center, May 3, 1993.

U.S. Geological Survey, 1988. Tritium Migration From a Low-Level Radioactive-Waste Printing Office, Washington, D.C. Disposal Site Near Chicago, Illinois. Water Supply Paper 2333, U.S. Government

Professional Paper 1405-A, U.S. Government Printing Office, Washington, D.C Ordovician Aquifer System in the Northern Midwest, United States... U.S. Geological Survey, 1992. Summary of Ground-Water Hydrology of the Cambrian-U.S.G.S

TABLE 1. Chronological Summary of RFI Activities and Cost Safety-Kleen Chicago Recycle Center

-		, ,
Date	Report/Activity	Cost
May 3, 1993	RCRA Facility Investigation Phase I Workplan	\$10,319
September 23, 1993	IEPA Approval Letter (qualified)	1
October 18, 1993	Literature Review/Use of the Bouwer and Rice Slug Test Method for Field Determination of Hydraulic Conductivity at the Safety-Kleen CRC (LTI letter to Lawrence Eastep)	\$5,400
November 5, 1993	Confirmed Work Plan Modifications (verbal)	\$4,572
December 6-9, 1993	Installation of soil borings and monitoring wells (SB/MW-4, -5, -6, -7, -8, -9, -10 and SB-4deep)	\$43,947
December 9-21, 1993	Monitoring well development (MW-4, -5, -6, -7, -8, -9, -10)	\$3,500
December 20-21, 1993	First round groundwater sampling (VOCs/SVOCs) (MW-1, -2, -3, -4, -5, -6, -7, -8, -9, -10)	\$13,146
December 20, 1993	IEPA approval of work plan modifications (letter)	! !
December 14, 1993- January 7, 1994	Surveyed locations and elevations of monitoring wells (MW-1, -2, -3, -4, -5, -6, -7, -8, -9, -10)	\$1,925
January 27, 1994	First Quarterly Report	\$3,519
February 13-16, 1994	Second round groundwater sampling (VOCs/SVOCs/App I) (MW-1, -2, -3, -4, -5, -7, -8, -9, -10)	\$11,340
February 14-16, 1994	In-situ hydraulic conductivity testing (MW-2, -8, -9)	\$3,423
April 14, 1994	Second Quarterly Report	\$1,401
May 26-27, 1994	Third round groundwater sampling (VOCs/SVOCs) (MW-1, -2, -3, -4, -5, -6, -7, -8, -9, -10)	\$8,159
May, 1993-June, 1994	Data evaluation/RFI Report	\$5,222

TABLE 2. SOIL BORING SCREENING RESULTS, Safety-Kleen Chicago Recycle Center

background pid soil pid reco (ppm) (ppm) (ppm) (ind 0.6 1.7 1.7 1.8 1.6 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.6 1.6 1.9 1.6 1.6 1.9 1.6 1.9 1.6 2.5 1.6 2.3 1.8 2.3 1.8 2.3 1.8 2.3 1.8 2.3 3.1 3.3 3.1 3.3 3.1 3.3 3.1 3.3 3.1 3.3 3.1 3.3 3.1 3.3 3.1 3.3 3.3	Serito Boring Spoon Boring Spoon Boring Spoon Coppm) Coppm Incorvery	24	2.9	2.4	28,-60,							-
Spillt background pit onlight convery (noher) Sample Supple	Serito Boring Spoon Boring Spoon Description Profession	24	2.7	2.4	56'-58'							
Spille background pit cal pid carvorry (Enches) Sample Supple	Serit to Boring Spoon Background plu Sur plu Increased	24	2.9	2.4	54'-56'							
Split background pid onlip id convery (inches) sample Supra background pid solip id recovery (inches) Sample background pid solip id recovery (inches) sample Sign background pid solip id recovery (inches) sample Sign background pid solip id recovery (inches) sample Sign background pid solip id 2.7 11 18 2.7 0.8 1.4 2.9 1.1 18 2.4 2.1 1.2 2.4 2.1 1.2 2.2 1.1 1.2 2.2 1.2 2.4 2.2 1.2 2.4 2.2 1.2 2.4 2.2 2.4 2.2 1.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.4 2.2 2.2 1.5 2.2 1.5 2.2 1.1 2.2 2.2	Seritio Boring Spoon Background plu Sur plu Increased	24	2.6	2.1	52'-54'							
Split background pid stell glad recovery (inches) Samples Journal pid hashige freewery Samples Journal of pid background pid sall pid recovery Lindraul (10pm) (2.5 14 1ab SER 11-79 0.3 0.7 11-1 2-4-6 0.6 1.0 1.5 1.5 5.7 0.8 1.4 30 6-8-7 2.1 4.6 1.5 1.5 5.7 0.8 1.4 30 16-16-16 2.1 4.6 1.5 1.5 1.7 1.1 1.0 1.5 2.4 18-20-7 2.1 4.6 1.5 1.2 1.4 2.1 2.4 1.5 1.2 1.4 2.1 2.4 2.1 2.2 2.4 2.1 2.2 2.4 2.1 2.2 2.4 2.1 2.2 2.2 2.2 2.2 2.2 1.5 3.5 1.6 2.1 2.1 2.2 1.5 3.5 1.6 </th <th> Boring Spoon Background plu Sprips Increased </th> <th>24</th> <th>2.7</th> <th>2.3</th> <th>50'-52'</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th>	Boring Spoon Background plu Sprips Increased	24	2.7	2.3	50'-52'							
Split background pid stell (ppm) convery (inches) samples John hot gram (ppm) death (ppm) stell (ppm) power (ppm) stell (ppm) body (ppm) body (ppm) stell (ppm) power (ppm) stell (ppm) convery (ppm) power (ppm) stell (ppm) power (ppm) stell (ppm) power (ppm) <th< th=""><th> Boring Spoon Background plu Sur put Incoracy </th><th>24</th><th>ω X</th><th>2.7</th><th>48'-50'</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>	Boring Spoon Background plu Sur put Incoracy	24	ω X	2.7	48'-50'							
Split background pid stell (spm) convery (finches) samples outpout handwag (spm) oppout handwag (spm) oppout handwag (spm) popun handwag (spm) popun handwag (spm) popun popun handwag (spm) popun	Seritio Boring Spoon Background plu Suri put Increased SB8 Inferval Cypm) Cypm) Cypm Increased SB8 Inferval Cypm) Cypm	24	Ç.)	2.8	46'48'							
Split background pid stell promote pid stell pr	Serit to Boring Spoon Bookground plu Sur put Increased SBB Inferval (ppm) (ppm) (ppm) (ppm)	24	3.9	3.0	44'-46'							
Split background plid solid plid recovery (mohes) samples Spain kackground plid solijal de recovery (prima) samples Spain kackground plid solijal de recovery (prima) soli prima soli prima solijal de recovery (prima) soli prima solijal de recovery (prima) solijal de recovery (prima) soli prima so	Serito Boring Spoon Background plu Suri put Incoracy SB8 Informal Oppm) Oppm) Oppm	24	3.2	2.9	42:44:							
Split background pird sulf index samples Samples Sprin background pird sprin list 2.9 1.7 11 2-4-6 0.6 10.0 15 x 5.97 0.8 1.4 20 8-10 2.1 4.6 15 x 5.97 0.8 1.4 22 10-12 2.1 4.6 15 x 15.3 15.3 12.4 2.4 2.1 2.4 11-1-12 2.1 4.6 1.5 15 2.7 1.4 2.1 2.4 11-13 1.1 1.5 1.5 1.5 1.4 2.1 2.4 11-14 1.7 2.9 x 1.5 1.2 2.4 x 1.1 2.4 2.1 2.4 <td< th=""><th> Sent to Boring Spoon Background plot Suppro S</th><th>24</th><th>3.0</th><th>2.9</th><th>40:42:</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></td<>	Sent to Boring Spoon Background plot Suppro S	24	3.0	2.9	40:42:							
Splitt background pid sul pid samples Samples Splitt Samples Splitt Samples Splitt Sprint Samples Sprint 1.7 11 8-10 2.1 4.3 1.5 X 5.7 0.8 1.4 12 8-10 2.1 4.3 1.5 1.5 2.7 0.8 1.4 2.1 18-12 2.1 4.4 1.9 1.9 1.1 1.5 1.2 2.1 18-12 2.1 4.4 1.9 2.4 X 1.1 1.5 2.1 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2 2.2 2.2 1.5 1.1 2.2 1.5 1.1 2.2 1.1 2.2 1.1	Sent to Boring Spoon Dackgroum plot Sull pin	24	ω : 	2.9	38'-40'							
Split background plot solitied promotery samples Samples Samples Samples Sprin background plot self ild recovery Spon (ppm) (pp	Sent to Boring Spoon Background plot Sulp		ယ . ယ	2.8	36'-38'							
Split background plut soli pid recovery (noches) samptes 59m background plut soli pid recovery (soches) Sport (ppm) (ppm) 115 x 113 29m background plut soli plut recovery 6-46 0.6 10.0 15 x 5.77 0.8 1.4 18 6-47 2.1 4.5 15 x 5.77 0.8 1.4 18 6-48 2.1 4.5 15 x 5.77 0.8 1.4 22 8-10 2.1 4.5 15 x 7.99 0.8 1.4 2.1 10-12 2.1 4.5 15 15 114,1 1.5 1.4 2.1 2.2 114-16 2.1 4.6 15 15 13 15 13 15 13 15 14 3.7 24 12-4 0.8 1.1 1.7 1.9 2.9 1	Sent to Boring Spoon Phackground plot Supprise State State Interval State Interval State Interval State Interval State Interval State Interval Interv		up to 7.2	3.2	34'-36'			į	ų. 6	J. 6	13-13	
Split background pid soil pid recovery (inches) saruples shown (ppm) samples saruples shown (ppm) samples shown (ppm) samp	Serial to Boring Spoon Dackground plot Sour plut Substance	24	4.0	ω ω	32'-34'			13	٠	A (131 167	
Split background pid soil pid recovery (inches) samples of the short of the pin of the	Sent to Boring Spoon Backgrount par Start part Start part part part part part part part	24	υ ü	3.1	30'-32'		×	22	4.9	50	11,13	
Split background pid sclip in creavery (noches) samples sum pines samples <	Sent to Boring Spoon Backgrount par Start par Spoon Spoo	22	3.7	3.1	28'-30'			15	4.9	4.6	9-11	
Split background pid soil pid promote Serone Serone (nerbes) serone Serone (nerbes) ser	Sent to Boring Spoon Backgrount par Start part Start part part part part part part part	24	3.2	3.1	26'-28'		×	17	4.5	4.3	71-91	
Split blackground pid soli pid scovery (inches) samples samples samples samples servery (inches) Samples samples samples spoon (ppm) opm spoon (ppm) samples spoon (ppm) samples samples spoon (ppm) samples spoon (ppm) <th> Sent to Boring Spoon Backgrount pad Stephen Stephen </th> <th>4 4</th> <th>3.5</th> <th>3.0</th> <th>24-26</th> <th></th> <th></th> <th>11</th> <th>4.5</th> <th>3.5</th> <th>5'-7"</th> <th></th>	Sent to Boring Spoon Backgrount pad Stephen	4 4	3.5	3.0	24-26			11	4.5	3.5	5'-7"	
Sylit background pid soli jrid recovery (inches) samples Sylon Longround pid soli jrid recovery (inches) samples Sylon Longround pid soli jrid recovery (inches) 6-6-8 0.6 1.0 1.5 x 3.5 0.5 1.7 1.8 6-6-8 2.1 4.3 1.5 x 3.5 0.5 1.7 1.8 6-6-8 2.1 4.3 1.5 x 3.5 0.5 1.7 1.8 6-6-8 2.1 4.2 1.9 1.5 1.15 3.5 0.6 1.7 1.8 8-10-12 2.1 4.2 1.9 2.4 x 1.15 1.1 1.1 2.1 2.4 16-18-2 2.1 1.5 1.5 1.1 1.5 2.1 1.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1	Sent to Boring Spoon Backgrount par State Part	3 H) i	2.0	47-77			hit obstruction	;	2.2	31-S	
Split blackground pid soli pid sol	Boring Spoon Chackground plu Sour plu		1 1.	o 4	77-77			13	1.1	0.5	1'-3	
Split beakground pid Sponn seal pid (ppm) recovery (finches) samples Sponn Soul beakground pid soil pid recovery (finches) Samples Sponn background pid soil pid recovery (finches) Samples Sponn Sponn beakground pid soil pid recovery (finches) Samples Sponn Sponn beakground pid soil pid recovery (finches) Samples Sponn Sponn beakground pid soil pid recovery (finches) Samples Sponn Sponn beakground pid soil pid recovery (finches) Samples Sponn search	Sent to Boring Spoon Cackground plue Sour plue Sign		2020	3	20122	5						520,
Split background pid soli pid (ppm) recovery (nches) samples byte (ppm) background pid soli pid (ppm) recovery (nches) samples (ppm) background pid soli pid (ppm) recovery (ppm) (p	Serit to Boring Spoon Chackground plue Sout plue		Gr.,	(Property	Interval	deen v	lab	•	(ppm)	(ppm)	Interval	SB7
Split background pid Spon in Interval seath ground pid (ppm) seath pic (ppm	Serit to Boring Spoon Coppm	(inches)	(maga)	(maa)	Spoon	Sar	sent to	recovery (inches)	soil pid	background pid	Spoon	Boring
Split in the proposition of	Sent to Boring Spoon Background plue Sout plue SSB8 Interval (ppm) (ppm) (inches)	recovery	soil pid	backeround pid	Split	Soil	samples		: :		Split	Soil
Split background pid sol pid brown sol pid brown recovery (inches) samt to brown samt to sam	Sent to Boring Spoon Background plue Sult plue Frovery			0.6	27.77		×	24	1.6	1.1	17'-19'	
Split blackground pid soil pid Inderval ssnit pid Inderval ssnit pid Inderval ssnit pid Inderval Split Inderval Split Inderval Split Inderval Split Inderval Inderval Inderval Split Inderval Inderval Inderval Split Inderval Inder	Serit to Boring Spoon Dackground plot Sulf plot Provincy		4 4	3.2	17-10		٠	3 10	ζ≅	0.9	15'-17'	
Split background pid soli pid recovery (inches) sant to label Split background pid soli pid recovery (inches) sant to label Split background pid soli pid recovery (inches) sant to label Split background pid soli pid recovery (inches) 8-10*** 2.4* 0.6 2.5 1.4 2.1 4.3 15 x 3.5* 0.3 0.7 11 8-24*** 0.6 2.1 4.3 15 x 3.5* 0.8 1.4 20 8-10*** 2.1 4.6 15 15 7.9* 0.8 2.1 22 18-20*** 2.1 4.6 15 15 11*13* 1.5 24 14-16*** 2.1 4.6 15 15 11*13* 1.5 24 14-16*** 2.1 2.9 2.4 x 15*19* 1.5 24 18-20*** 2.1 2.9 2.1 x 15*19* 1.5 11*19* 1.5	Serit to Boring Spoom Corner Surpture Surpt		ω u	<u>α</u>	15'-17'			7 0	1.2	0.9	13'-15'	
Split background pid soll pid recovery (inches) sant to label Split background pid soll pid recovery (inches) sant to label Split background pid soll pid recovery (inches) sant to label Sum to label Split background pid soll pid recovery (inches) sant to label Split background pid soll pid recovery (inches) 6-3° 2.1 4.6 1.5 x 5-7 0.8 1.4 20 6-3° 2.1 4.6 1.5 x 7-9 0.8 2.1 22 8-10 2.1 4.6 1.5 x 15-1.5 7-9 0.8 2.1 22 16-18 2.1 2.9 2.4 x 15-1.5 1.4 2.1 22 16-18 2.1 2.9 2.4 x 15-1.5 1.4 2.1 24 16-18 2.1 2.9 2.4 x 15-1.5 1.4 3.7 24 18-20 2.1 1.5 1	Serit to Boring Spoom Corner Solit Substitute		3.7	3.1	13'-15'			ħ H	- :	0.	11-13	
Split blackground pid soli pid blackground pid	Sent to Boring Spoom Corner Surpture Surptu	15	5.1	u i	11'-13'			5 5	1.1	3 ;	9-11	
Split background pid soil pid recovery (inches) samtples Spnit background pid soil pid recovery (inches) samtples Boring Spound pid soil pid recovery (inches) samtples Boring Spound pid soil pid recovery (inches) samtples SEB Indraval (ppm) (ppm) (ppm) (ppm) (inches) 8-10 2.1 4.3 1.5 x 5.7 0.8 1.4 20 8-10 2.1 4.6 1.5 1.5 7.9 0.8 1.4 20 10-12 2.1 4.6 1.5 1.5 7.9 0.8 1.4 20 10-14 2.1 4.6 1.5 1.5 1.5 2.1 1.5 2.1 10-14 2.1 2.9 2.4 x 1.1 1.1 2.1 2.4 11-14 2.1 2.9 2.4 x 1.7 1.9 1.6 2.1 2.1 2.1 <tr< th=""><th> Sent to Boring Spoom Corner Sour put Sour put Spoom Sp</th><th>18</th><th>4.1</th><th>u u</th><th><u>0-11</u></th><th></th><th></th><th>1.</th><th></th><th>0.1</th><th>7-9</th><th></th></tr<>	Sent to Boring Spoom Corner Sour put Sour put Spoom Sp	18	4.1	u u	<u>0-11</u>			1.		0.1	7-9	
Split background pid soil pid lineway seathples seathples plan (ppm) both ppm background pid (ppm) soil pid (ppm) recovery (ppm) seath plan (ppm) seat	Boring Spoon Sackground plut Soli pin Fredrey		6.9	3.5	71-91			17	10	0.4	5 ,	
Split background pid soil pid recovery (inches) sentples John boom background pid soil pid recovery (inches) sentples John background pid soil pid recovery (inches) sentples John background pid soil pid recovery (inches) sent to feet Boring Spoon (ppm) (ppm) (ppm) (inches) 10-42 0.6 2.5 1.4 2.5 1.4 2.0 1.7 1.8 8-10° 2.1 4.6 1.5 x 5.77 0.8 1.4 20 8-10°-12° 2.1 4.6 1.5 x 1.9-17 1.4 2.2 10°-12° 2.1 4.6 1.5 x 1.5-17 1.4 2.1 2.2 10°-12° 2.1 4.6 1.5 x 1.5-17 1.4 2.1 2.2 10°-12° 2.1 2.9 2.4 x 1.7-13 2.4 11°-12° 2.1 2.9	Boring Spoon Sackground plue Soli plue Fractive SB8 Interval (ppm) (ppm) (inches) SB8 Interval (ppm) (ppm) (inches) SB8 Interval (ppm) (ppm) (inches) X 3'-5' 0.6 1.7 18 X 5'-7' 0.8 2.1 22 9'-11' 1.0 1.5 2.1 13'-15' 1.4 2.1 24 X 15'-17' 1.4 2.1 24 X 15'-17' 1.6 10-12 24 Samples Soil Split background pid soil pid recovery sent to SB9 Interval (ppm) (ppm) (inches) samples SB9 11'-3' 0.4 1.3 14 X 7'-9' 1.6 2.3 15 X 7'-9' 1.6 2.3 20 11'-13' 1.7 2.4 2.1 Sent to Split background pid soil pid recovery sent to Split sackground pid soil pid recovery sent to Split sackground pid soil pid recovery	24	4.3	3.7	5-7		×	15	د	0 60	4 7 5 5 - 5	
Split by ackground pid by proper propersion interval plant pl	Sent to Boring Spoon Correct Spoon Correct Spoon Spoon Correct Spoon Spoon Correct Spoon Spoon Spoon Correct Spoon Spoon Correct Spoon	9	6.0	4.1	ين پر	•		4	¦	0.0) i	
Split by ackground pid by poom indexal plat by po	Boring Spoon Correct Soli Pour Correct	12	6.3	4.1	1.3			01	0.4	0.3	11:31	0250
Split by the background pid spoon soil pid precovery (inches) samples samples spoon Sumples samples spoon Spoun spoon Spoon Spoun spoon Spoun spoon	Sent to Boring Spoon S	(20000)	(moto)	(ppm)	Interval	SB10	lab		(ppm)	(ppm)	Interval	SRA
Split Interval background pid Soil pid Interval ssimples Interval (ppm) background pid (ppm) ssimples Interval (ppm) sum background pid (ppm) solit (ppm) recovery (inches) samples Interval (ppm) background pid (ppm) solit (ppm) tecovery (inches) 2-44 0.6 1.0 1.5 x 3-5 0.6 0.7 1.1 4-6 0.6 1.0 1.5 x 3-5 0.6 1.7 18 4-6 0.6 1.5 x 3-5 0.6 1.7 18 4-6 1.5 x 5-7 0.8 1.4 20 8-10-12 2.1 4.2 19 11-13 1.5 2.1 22 10-12 2.1 nr 1.5 1.7 1.8 2.1 2.2 11-4-16 2.1 2.9 24 x 1.5-17 1.4 2.1 2.4 18-20 2.1 2.9 2.4 x 1.5-17 1.4 2.1 2.2	Sent to Boring Spoon Correct	(inches)	(mmm)	ond numo faxed	Spoon	Boring	sent to	recovery (inches)	soil pid	background pid	Snoon	Roring
Split background pid soli pid provery (inches) searn to sear to popul <	Sent to Boring Spoon Coppm C	recovery		L. d. mad aid	Split	Soil	samples				Split	ez:
Split Interval background pid Spoon soil pid Interval (ppm) covery (inches) sent to Interval (ppm) Spoon (ppm) background pid soil pid Ppm) sent to Spoon (ppm) background pid soil pid Ppm) recovery (inches) Spoon Spoon (ppm) (ppm) (ppm) mecovery (inches) sent to Spoon (ppm) SB8 Interval (ppm) (ppm) (ppm) (inches) 8-10* 0.6 1.00 1.5 x 3-5 0.3 0.7 11 2-4* 0.6 1.00 1.5 x 5-8 0.6 1.7 18 4-6* 1.5 1.5 x 5-7.9 0.8 2.1 22 10-12* 2.1 4.6 1.5 x 11-13* 1.0 1.5 24 12-14* 2.1 2.9 2.4 x 15-15* 1.4 2.1 22 18-220* 2.1 2.9 2.4 x 15-17* 1.4 3.7 24 18-220* 2.1 2.9 7.9 x 15-1	Boring Spoon Correct Soli Pour Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5 0.6 1.7 18 X 5-7 0.8 1.4 20 7-9 0.8 2.1 22 9-11 1.0 1.5 21 11-13 1.5 1.5 2.1 12-17 1.4 2.1 24 x 15-17 1.6 10-12 24 samples Soil Split background pid soil pid recovery sent to Bring Spoon (ppm) (ppm) (inches) 11-3 0.4 1.3 1.4 x 7-9 1.6 2.3 15 x 7-9 1.6 2.3 20 11-13 1.1 1.6 2.3 20 11-13 1.1 1.6 2.3 20 11-13 1.7 2.4 2.1 x 7-9 1.6 2.3 20 11-13 1.7 2.4 2.1 x 7-9 1.6 2.3 20 x 11-13 1.7 2.4 x 11-13 1.7 2.4 x 11-13 1.7 2.4 x 11-13 1.7 2.4 x 11-13 1.8 2.5 1.7 x 12-17 1.8 2.3 2.4 x 11-17 1.8 2.3 2.4 x 11-18 2.5 1.7 x 12-17 1.8 2.3 2.4 x 11-18 2.5 1.7 x 12-17 1.8 2.3 2.4 x 11-18 2.5 1.7 x 11-18 2.5 2.5 x 11-18 2.5 2.5 x 11-18 2.5 2.5 x x x x x x x x x x		2.3	1.8	17'-19'		×	20	3.1	2.1	18'-20'	
Split background pid soil pid recovery (inches) sent to linderval Spoon Spoon Spoon background pid soil pid recovery pmn sent to lab Spoon Spoon ppmn (ppm) (ppm) <th> Boring Spoon Correct Soli Pour Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5 0.6 1.7 18 X 5-7 0.8 1.4 20 7-9 0.8 2.1 22 9-11 1.0 1.5 21 13-15 1.4 2.1 24 X 15-17 1.4 3.7 24 semples Soil Split background pid soil pid recovery SB9 Interval (ppm) (ppm) (inches) 1-3 1.6 1.9 1.5 X 7-9 1.6 2.3 1.5 X 7-9 1.6 2.3 20 11-13 1.7 2.4 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-14 2.1 2.4 11-15 2.1 11-15 2.1 11-15 2.1 11-15 2.1 11-15 2.1 </th> <th></th> <th>2.3</th> <th>1.8</th> <th>15'-17"</th> <th></th> <th></th> <th>17</th> <th>2.7</th> <th>2.1</th> <th>16-18</th> <th></th>	Boring Spoon Correct Soli Pour Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5 0.6 1.7 18 X 5-7 0.8 1.4 20 7-9 0.8 2.1 22 9-11 1.0 1.5 21 13-15 1.4 2.1 24 X 15-17 1.4 3.7 24 semples Soil Split background pid soil pid recovery SB9 Interval (ppm) (ppm) (inches) 1-3 1.6 1.9 1.5 X 7-9 1.6 2.3 1.5 X 7-9 1.6 2.3 20 11-13 1.7 2.4 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-13 2.0 11-14 2.1 2.4 11-15 2.1 11-15 2.1 11-15 2.1 11-15 2.1 11-15 2.1		2.3	1.8	15'-17"			17	2.7	2.1	16-18	
Split background pid soil pid recovery (inches) sent to lab Sum pless bour spoon background pid soil pid recovery spoon depmn background pid soil pid recovery pinches) sent to lab Spoon depmn depmn (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (inches) 244 0.6 10.0 15 x 3-5° 0.6 1.7 18 6-8° 2.1 4.3 15 x 5-7° 0.8 1.4 20 8-10° 2.1 4.6 15 x 5-7° 0.8 1.4 22 10°-12° 2.1 4.2 19 11°-13° 1.5 24 11-13° 2.1 2.9 24 x 11°-13° 1.4 2.1 24 18-20° 2.1 2.9 24 x 17°-19° 1.6 10°-12° 24 18-20° 2.1 2.9 3.7 2.1	Boring Spoon Correct Soli Pour Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5' 0.6 1.7 18 X 5-7' 0.8 1.4 20 7-9' 0.8 2.1 22 11-13' 1.5 1.5 21 12-11' 1.0 1.5 21 X 15-17' 1.4 2.1 24 X 15-17' 1.6 10-12 24 Seamples Soil Split background pid soil pid recovery SB9 Interval (ppm) (ppm) (inches) 11-3' 0.4 1.3 14 X 7-9' 1.6 2.3 15 X 7-9' 1.6 2.3 20 11-13' 1.7 2.4 21 X X Y-9' 1.6 2.3 20 X Y-9' 1.6 2.3 20 X Y-9' 1.6 2.3 20	17	2.5	1.8	13'-15'			18	2.7	2.1	14-16	
Split background pid soil pid recovery (inches) sent to labe Spoon background pid soil pid recovery (inches) sent to labe Boring Spoon tapm background pid soil pid recovery pin Spoon (ppm)	Boring Spoon Correct Soli Pour Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5° 0.6 1.7 18 X 5-7° 0.8 1.4 20 7-9° 0.8 2.1 22 9'-11' 1.0 1.5 21 13'-15' 1.4 2.1 24 X 15'-17' 1.4 3.7 24 semples Soil Split background pid soil pid recovery SB9 Interval (ppm) (ppm) (inches) 11-3° 0.4 1.3 14 X 7-9° 1.6 2.3 15 X 7-9° 1.6 2.3 20 15 18 15 16 2.3 20 18 18 16 2.3 20 10 10 10 10 11 12 13 14 12 13 14 13 15 15 14 15 2.3 20 15 16 2.3 20 16 17 16 2.3 20 17 16 2.3 20 18 18 19 15 18 19 15 19 10 10 10 10 10 10 10	21	2.4	1.7	11'-13'			18	2.5	2.0	12'-14'	
Split background pid soil pid recovery (inches) sent to lab Spon background pid soil pid recovery spon Spon (ppm) (ppm) recovery (inches) sent to lab Boring Spon tackground pid soil pid recovery pin Linterval (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (mches) Linterval 0.6 1.0.0 1.5 x 5:7 0.6 1.7 18 6-8° 2.1 4.6 1.5 x 5:7 0.8 1.4 20 8:-10' 2.1 4.6 1.5 x 5:7 0.8 1.4 20 10'-12' 2.1 4.6 1.5 x 15:17 1.0 1.5 21 11'-13' 2.1 4.6 1.5 x 15:17 1.4 2.1 2.4 11'-13' 2.1 2.9 2.4 x 15:17 1.4 2.1 2.4	Sent to Boring Spoon Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5 0.6 1.7 18 X 5-7 0.8 1.4 20 7-9 0.8 2.1 22 9'-11' 1.0 1.5 21 11'-13' 1.5 1.5 21 12'-17' 1.4 2.1 24 X 15'-17' 1.6 10-12 24 sent to Boring Spoon (ppm) (ppm) (inches) 1ab SB9 Interval (ppm) (ppm) (inches) X 1-3 0.4 1.3 14 X 1-3 1.6 2.3 15 X 7-9' 1.6 2.5 18	20	2.3	1.6	9'-11'			15	2.2	1.8	10'-12'	
Split background pid soil pid recovery (inches) sent to lab Spoon background pid soil pid recovery (inches) Spoon (ppm) (ppm) recovery (inches) sent to sent to lab Boring Spoon (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (inches) 12-44 0.6 10.0 15 x 1-3-5 0.6 1.7 18 6-8 2.1 4.6 15 x 5-7 0.8 1.4 20 8-10' 2.1 4.6 15 x 5-7 0.8 1.4 20 10-12' 2.1 4.6 15 15 11-13' 1.5 2.1 2.2 12-14' 2.1 4.6 15 15 11-13' 1.5 2.1 2.2 12-14' 2.1 2.9 2.4 x 15-17' 1.4 2.1 2.4 18-20' 2.1 2.9 7 1.5	Boring Spoon Correct Soli Pour Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5' 0.6 1.7 18 X 5'.7' 0.8 1.4 20 7'.9' 0.8 2.1 22 9'.11' 1.0 1.5 21 11'.13' 1.5 1.5.4.5 24 13'.15' 1.4 2.1 24 X 15'.17' 1.4 3.7 24 sent to Spit background pid soil pid recovery sent to SB9 Interval (ppm) (ppm) (inches) 11-3' 0.4 1.3 14 5'.7' 1.6 2.3 15		2.5	1.6	7:-9'		×	20	2.1	1.7	8:-10	
Split background pid soil pid soil pid samples samples Spon background pid soil pid recovery Spoon (ppm) (ppm) (ppm) (ppm) samples SBR Interval background pid soil pid recovery Linterval (ppm) (ppm) (ppm) (ppm) (ppm) (ppm) (inches) Linterval (ppm) (ppm) (ppm) (ppm) (inches) Spoon (ppm) (ppm) (ppm) (inches) Linterval (ppm) (ppm) (ppm) (inches) Spoon 2.1 4.3 1.5 x 5.77 0.8 1.4 20 8-10-12 2.1 4.6 1.5 1.5 x 11-13' 1.5 2.1 22 10-12:1 2.1 4.6 1.5 1.5 x 11-13' 1.5 1.5 2.1 16-18:20' 2.1 2.9 2.4 x 1.5-1.7'	Boring Spoon Correct South Part Correct Iab SB8 Interval (ppm) (ppm) (inches) X 3-5 0.6 1.7 11 X 5-7 0.8 1.4 20 7-9 0.8 2.1 22 9'-11' 1.0 1.5 21 11'-13' 1.5 1.5 2.1 12'-17' 1.4 2.1 24 X 15'-17' 1.6 10-12 24 sent to SB9 Interval (ppm) (ppm) (inches) 1-3' 0.4 1.3 1.4 3-5' 1.6 1.9 1.5 3-5' 1.6 1.9 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 21 22 1.5 22 1.5 22 1.5 22 1.5 22 1.5 22 1.5 22 1.5 22 2.5 1.6 1.9 3-5' 1.6 1.9 1.5 1.5 2.1 2.1 2.2 2.1 2.2 3.7 1.6 3.7 1.6 3.5' 1.6 3.5' 1.6 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5' 3.5' 1.5'	15	2.3	1.6	5'-7'			19	1.7	1.4	, kg (
Split background pid soil pid recovery (inches) samples Spin background pid soil pid recovery Spoon (ppm) (ppm) recovery (inches) sent to lab SB8 Interval Spin background pid soil pid recovery 1nterval 0.6 2.5 14 11-3 0.3 0.7 11 2-4 0.6 1.00 1.5 x 31-5 0.6 1.7 18 6-8 2.1 4.3 1.5 x 51-7 0.8 1.4 20 8-10 2.1 4.6 1.5 x 51-7 0.8 1.4 20 8-10-12 2.1 4.2 19 9-11 1.0 1.5 21 10-12 2.1 4.2 19 2.1 1.5 2.1 22 11-3 2.1 4.2 1.5 1.5 1.5 1.5 2.1 16-18* 2.1 2.9 2.4	Sent to Boring Spoon S	15	1.9	1.6	3-5			19	1.6	1.2	4 t	
Split background pid soil pid recovery (inches) samples Sum Spoon background pid soil pid recovery Spoon (ppm) (ppm) recovery (inches) sent to Boring Spoon (ppm) soil pid recovery 2!-4* 0.6 2.5 14 11-3 3.5 0.7 11 4*-6* 0.6 10.0 15 x 1-3 0.5 1.7 18 8*-10* 2.1 4.6 15 x 5'-7 0.8 1.4 20 8*-10* 2.1 4.6 15 x 5'-7 0.8 2.1 22 10*-12* 2.1 4.6 15 x 11*-13* 1.5 2.1 22 12*-14* 2.1 2.4 15 11*-13* 1.5 2.4 2.1 2.4 2.1 2.4 2.4 2.1 2.4 2.4 2.4 2.4 2.4 2.4 2.4 3.7	Sent to Boring Spoon S	14	1.3	0.4	1-3			15	ادا	0.0	TITICI VAL	3DJ
Split background pid soil pid recovery (inches) samples Sum ples Spoon background pid soil pid recovery Spoon (ppm) (ppm) recovery (inches) sent to Boring Spoon (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 11 1-3' 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.6 1.7 18 8'-10' 2.1 4.6 15 x 5'-7' 0.8 1.4 20 8'-10' 2.1 4.2 19 9'-11' 1.0 2.1 22 10'-12' 2.1 4.6 15 15 11'-13' 1.5 2.1 22 12'-14' 2.1 2.9 2.4 x 11'-13' 1.5 2.1 2.4 16'-18' 2.1 2.9 2.4 x 15'-17' 1.4 2.1 2.4 18'-2	Sent to Boring Spoon Control Son put Covery		(mdd)	(ppm)	Interval	SB9	lab	1000 (000)	(mpm)	(ppm)	spoon	Boring
Split background pid soil pid recovery (inches) samples Sun Spin background pid soil pid recovery Spoon (ppm) (ppm) (ppm) mecovery sent to Boring Spoon background pid soil pid recovery 2-4- 0.6 2.5 14 1-3 11-3 0.3 0.7 11 4-6- 0.6 10.0 15 x 3-5 0.6 1.7 18 6-8- 2.1 4.3 15 x 5-7 0.8 1.4 20 8-10- 2.1 4.6 15 x 9-11- 1.0 1.5 22 10-12- 2.1 4.2 19 x 11-13- 1.5 21 22 12-14- 2.1 4.5 1.5 x 11-13- 1.5 24 12-14- 2.1 2.9 2.4 x 15-17- 1.4 3.7 24 18-20-	sent to lab Boring Spoon background plut (ppm) son put (inches) lab SB8 Interval (ppm) (ppm) (inches) x 3'-5' 0.6 1.7 18 y-17' 0.8 1.4 20 9'-11' 1.0 1.5 21 11'-13' 1.5 2.1 22 13'-15' 1.4 2.1 24 15'-17' 1.4 2.1 24 17'-19' 1.6 10-12 24 19'-21' 1.6 7-13 20		soil pid	background pid	Spoon	Soil	samples	recovery (inches)	soil pid	background pid	Split	Soil
Split background pid soil pid recovery (inches) samples Sum Spon background pid soil pid recovery Spoon (ppm) (ppm) recovery (inches) sent to Boring Spoon (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 1-3 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.6 1.7 18 6'-8' 2.1 4.3 15 x 5'-7' 0.8 1.4 20 8'-10' 2.1 4.6 15 y-11' 1.0 1.5 22 10'-12' 2.1 4.2 19 9'-11' 1.0 1.5 21 12'-14' 2.1 4.6 15 15'-17' 1.4 2.1 2.4 14'-16' 2.1 4.6 15 15'-17' 1.4 2.1 2.4 16'-18' 2.1 2.9 24 x	Sent to Boring Spoon Correct South Pict Correct		7-15	1.6	19'-21'							
Split background pid soil pid recovery (inches) samples Sum Spon background pid soil pid recovery Spoon (ppm) (ppm) (ppm) lab Boring Spoon (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 1-3 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.6 1.7 18 6'-8' 2.1 4.3 15 x 5'-7' 0.8 1.4 20 8'-10' 2.1 4.6 15 5'-7' 0.8 2.1 22 10'-12' 2.1 4.2 19 9'-11' 1.0 1.5 24 12'-14' 2.1 4.6 15 9'-11' 1.0 1.5-4.5 24 14'-16' 2.1 nr 15'-17' 1.4 2.1 2.4 16'-18' 2.1 2.9 2.4 x 15	Sent to Boring Spoon Correct		10-12	1.6	17'-19"			7	2.9	2.1	18-20	
Split background pid soil pid recovery (inches) samples Sum Spon background pid soil pid recovery Spoon (ppm) (ppm) (ppm) lab Boring Spoon (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 1-3 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.6 1.7 18 6'-8' 2.1 4.3 15 x 5'-7' 0.8 1.4 20 8'-10' 2.1 4.6 15 5'-7' 0.8 2.1 22 10'-12' 2.1 4.2 19 9'-11' 1.0 1.5-4.5 24 12'-14' 2.1 4.6 15 11'-13' 1.5 2.7 2.4 14'-16' 2.1 nr 13'-15' 1.4 2.1 2.4	Sent to Boring Spoon Correct South Pict Correct			4	15'-17'		×	24	2.9	2.1	16'-18'	
Split background pid soil pid recovery (inches) samples Sum Spun background pid soil pid recovery Spoon (ppm) (ppm) (ppm) lab Boring Spoon (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 1-3' 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.6 1.7 18 6'-8' 2.1 4.3 15 x 5'-7' 0.8 1.4 20 8'-10' 2.1 4.6 15 7'-9' 0.8 2.1 22 10'-12' 2.1 4.6 15 9'-11' 1.0 1.5-4.5 24 12'-14' 2.1 4.6 15 11'-13' 1.5 1.5-4.5 24	Sent to Boring Spoon Correct	4 4	2.1	1.4	13'-15'			멑	;	2.1	14'-16'	
Split background pid soil pid recovery (inches) samples Sun spin background pid soil pid recovery Spoon (ppm) (ppm) (ppm) lab Boring Spoon (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 1-3' 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.6 1.7 18 6'-8' 2.1 4.3 15 x 5'-7' 0.8 1.4 20 8'-10' 2.1 4.6 15 7'-9' 0.8 2.1 22 10'-12' 2.1 4.2 19 9'-11' 1.0 1.5 21	Sent to Boring Spoon Correct	2.4	1.54.5	1.5	11'-13'			15	4.6	2.1	12'-14'	
Split background pid soil pid recovery (inches) samples Sun spin background pid soil pid recovery Spoon (ppm) (ppm) (ppm) lab SB8 Interval (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 1-3' 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.8 1.4 20 6'-8' 2.1 4.3 15 x 5'-7' 0.8 1.4 20 8'-10' 2.1 4.6 15 7'-9' 0.8 2.1 2.2	Sent to Boring Spoon Correct	2 12		1.0	9'-11			19	4.2	2.1	10'-12'	
Split background pid soil pid recovery (inches) samples son spin background pid soil pid recovery Spoon (ppm) (ppm) (ppm) lab SB8 Interval (ppm) (ppm) (inches) 2'-4' 0.6 2.5 14 1-3' 0.3 0.7 11 4'-6' 0.6 10.0 15 x 3'-5' 0.6 1.7 18 6'-2' 2.1 4.3 15 5'-7' 0.8 1.4 20	Sent to Boring Spoon Dackground plu Sout plu Dackground plu Dackground plu Sout plu Dackground plu Da		2.1	0.8	7-9			15	4.6	2.1	8'-10'	
Split background pid soil pid recovery (inches) samples soil samples soil soil pid background pid soil pid recovery Spoon (ppm) (ppm) (ppm) lab Boring Spoon (ppm) (ppm) (inches) 1nterval 0.6 2.5 14 SB8 Interval 0.3 0.7 11 2'-4' 0.6 1.0 15 x 3'-5' 0.6 1.7 18	Sent to Boring Spoon Bockground plu Sout plu Reverse		1.4	8.0	5.7			15	4.3 3	2.1	6.	
Split background pid soil pid recovery (inches) sent to Spoon (ppm) (ppm) (ppm) lab SB8 Interval (ppm)	sent to Boring Spoon background plu Sur plu Provincy lab SB8 Interval (ppm) (ppm) (inches) 1'-3' 0.3 0.7 11		1.7	0.6	3'-S'		×	15	10,0	0.6	4 6	
Split background pid soil pid recovery (inches) sent to Spoon (ppm) (ppm	sent to Boring Spoon (ppm) (ppm) (inches)	11	0.7	0.3	1'-3'			14	2.5	0.6	JI AI	304
Split background pid soil pid recovery (inches) sent to Boring Spoon background pid soil pid recovery	sent to Boring Spoon background plu son plu recovery		(ppm)	(ppm)	Interval	SB8	lab	(money)	(ppm)	(ppm)	Spoon	Boring
	The spile of the second of the		soil pid	background pid	Spoon	Boring	samples	recovery (inches)	soil pid	background pid	Split	Soil

^{*} permeability test nr = no reovery

TABLE 3. AND ANALYSES, Safety-Kleen Chicago Recycle Center SUMMARY OF DECEMBER, 1993 SOIL SAMPLE COLLECTIONS

				SB7					SB6				-	SB5					ļ	SB4	Soil Boring
12.5-13 (DUP5)	12-12.5	11.5-12	8.5-9	8-8.5		18-18.5	17.5-18	6.5-7	6-6.5	19-20	18.5-19	9.5-10 (DUP3)	9-9.5	8.5-9		17.5-18	17-17.5 (DUP4)	16.5-17	5.5-6	5-5.5	Interval (feet)
		×		×			×		×		×			×			×	×		×	VOC Analysis
×	×		×			×		×		×		×	×			×			×		SVOC and Metals Analyses
																					Permeability Test
	*****								SB10					SB9						SB8	Soil Boring
					18-18.5	17.5-18	14.5-15	8-9	7.5-8	18.5-19	18-18.5 (DUP1)	17.5-18	8.5-9	8-8.5	20-20.5	19.5-20	18-18.5	17.5-18	8-8.5	7.5-8	Interval (feet)
						×			×		×	×		×		×		×		×	VOC Analysis
					×			×	!	×			×		×		×		×		SVOC and Permeability Metals Test Analyses
							×														Permeabii Test

TABLE 4. (Safety-Kleen Chicago Recycle Center) LIST OF ORGANIC COMPOUND ANALYTES FOR SOIL AND GROUNDWATER

VOLATILE ORGANIC COMPOUNDS

Methylene Chloride cis-1,3-Dichloropropene Chloroethane Total Xylenes Ethylbenzene Bromotorm Trans-1,3-Dichloropropene Benzene Trichloroethene 1,2-Dichloropropane Bromodichloromethane Chloroform Acetone Vinyl Chloride Bromomethane Chloromethane Trichlorotrifluoroethane Tetrahydrofuran Styrene Chlorobenzene Toluene 1,1,2,2-Tetrachloroethane Tetrachloroethene 2-Hexanone 4-Methyl-2-pentanone 1,1,2-Trichloroethane Dibromochloromethane Vinyl Acetate Carbon Tetrachloride 1,1,1-Trichloroethane 2-Butanone 1,2-Dichloroethane 1,1-Dichloroethene Carbon Disulfide ,2-Dichloroethene (total) ,1-Dichloroethane

SEMI-VOLATILE ORGANIC COMPOUNDS Phenol 4-Nitrophenol Discorrafican

bis(2-Chloroethyl) ether Hexachlorocyclopentadiene 2-Methylnaphthalene 4-Chloro-3-Methylphenol Hexachlorobutadiene 4-Chloroaniline 2,4-Dichlorophenol bis(2-Chloroethoxy)methane Benzoic acid 2-Nitrophenol Nitrobenzene Hexachloroethane N-Nitroso-Di-n-propylamine 4-Methylphenol bis(2-Chloroisopropyl) ether 2-Methylphenol Benzyl alcohol 2-Chlorophenol 3-Nitroaniline Naphthalene 2,4-Dimethylphenol 2,6-Dinitrotoluene Acenaphthylene Dimethyl Phthalate 2-Nitroaniline 2-Chloronaphthalene 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 1,2,4-Trchlorobenzene Isophorone 1,2-Dichlorobenzene 1,4-Dichlorobenzene 1,3-Dichlorobenzene Phenanthrene 4,6-Dinitro-2-Methylphenol 4-Chlorophenyl-phenylether Diethylphthalate 2,4-Dinitrotoluene Dibenzofuran N,N-Dimethylacetamide 3-Picoline Pyridine Benzo (g,h,i) Perylene Dibenzo (a,h) Anthracene Indeno (1,2,3-cd) Pyrene Benzo (a) Pyrene Benzo (k)Fluoranthene Benzo (b) Fluoranthene Di-n-Octyl Phthalate bis (2-Ethylhexyl) Phthalate Chrysene Benzo (a) Anthracene 3,3'-Dichlorobenzidine Butylbenzylphthalate Fluoranthene Di-n-Butylphthalate Anthracene Pentachlorophenol Hexachlorobenzene 4-Bromophenyl-phenylether N-Nitrosodiphenylamine (1) 4-Nitroaniline Fluorene 1-Methyl-2-pyrrolidinone

Acenaphthene 2,4-Dinitrophenol

TABLE 5. LIST OF APPENDIX I ANALYTES FOR MW2, SECOND QUARTER SAMPLING EVENT (Safety-Kleen Chicago Recycle Center)

trans-1,4-Dichloro-Peare trans-1,4-Dichloro-Peare 1,2-Dibromo-3-chloropropane 2-Chloro-1,3-Butadiene Trichlorotrifluoroethane Tetrahydrofuran Methylmethacrylate Ethylmethacrylate Pentachloroethane	Chlorobenzene Ethylbenzene Styrene Xylene (total) Acrolein Acrylonitrile Trichlorofiluoromethane Dichlorodifluoromethane Acetonitrile lodomethane Propionitrile (Ethyl Cyanide) 3-Chloropropene Methacrylonitrile Dibromomethane Isobutyl alcohol 1,2-Dibromoethane 1,3-Tichloropropene 1,1,1,2-Tetrachloroethane	I,2-Dichloropropane cis-1,3-Dichloropropane cis-1,3-Dichloropropene Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene Bromoform 4-Methyl-2-pentanone 2-Hexanone Tetrachloroethene 1,1,2,2-Tetrachloroethane Toluene	Acetone Carbon Disulfide 1,1-Dichloroethene 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Reprodict locations	VOLATILE ORGANIC COMPOUNDS Chloromethane Bromomethane Vinyl Chloride Chloroethane Methylene Chloride
Phenanthrene Anthracene Di-n-Butylphthalate Fluoranthene Pyrene Butylbenzylphthalate 3,3'-Dichlorobenzidine Benzo(a)anthracene Chrysene bis(2-Ethylhexyl)phthalate Di-n-Octyl phthalate Benzo(b)fluoranthene	Dimethylphthalate Acenaphthylene 2,6-Dinitrotoluene 3-Nitroaniline Acenaphthene 2,4-Dinitrophenol 4-Nitrophenol Dibenzofuran 2,4-Dinitrotoluene Diethylphthalate 4-Chlorophenyl-phenylether Fluorene 4-Nitroaniline 4,6-Dinitro-2-methylphenol N-Nitrosodiphenyl-phenylether Hexachlorophenyl-phenylether Hexachlorophenyl-phenylether	bis(2-Chloroethoxy)methane 2,4-Trichlorobenzene 1,2,4-Trichlorobenzene Naphthalene 4-Chloroaniline Hexachlorobutadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol 2,-Nitroaniline	Benzyl alcohol 1,2-Dichlorobenzene 2-Methylphenol bis(2-Chloroisopropyl)ether 4-Methylphenol N-Nitroso-Di-n-propylamine Hexachloroethane Nitrobenzene Isophorone 2-Nitrophenol 2,4-Dimethylphenol Benzoic acid	SEMI-VOLATILE ORGANIC COMPOUNDS Phenol Benzo(k)fluoranth bis(2-Chloroethyl)ether Benzo(a)pyrene 2-Chlorophenol Indeno(1,2,3-cd)p 1,3-Dichlorobenzene Dibenzo(a,h)anthr 1,4-Dichlorobenzene Benzo(g,h,i)peryle 1,4-Dichlorobenzene I.4-Dioxane
Aramite Chlorobenzilate p-Dimethylaminoazobenzene 3,3'-Dimethylbenzidine 2-Acetylaminofluorene 7,12-Dimethylbenz(a)anthracene Hexachlorophene 3-Methylcholanthrene 3-Picoline 1-Methyl-2-pyrrolidinone N,N-Dimethylacetamide	Isosafrole 1,4-Naphthoquinone 1,3-Dinitrobenzene Pentachlorobenzene 1-Naphthylamine 2-Naphthylamine 2,3,4,6-Tetrachlorophenol 1,3,5-Trinitrobenzene Diallate Phenacetin Diphenylamine 5-Nitro-o-toluidine 4-Aminobiphenyl Pronamide 2-sec-Butyl-4,6-dinitrophenol Pentachloronitrobenzene 4-Nitroquinoline-1-oxide Methapyrilene	3-Methylphenol N-Nitrosopyrrolidine Acetophenone N-Nitrosomorpholine o-Toluidine N-Nitrosopiperidine a,a-Dimethylphenethylamine 2,6-Dichlorophenol Hexachloropropene p-Phenylenediamine N-Nitroso-di-n-butylamine Safrole 1,2,4,5-Tetrachlorobenzene	acrylate nethylamine rrylate rthylethylamine anesulfonate rthylamine nesulfonate	Benzo(k)fluoranthene Benzo(a)pyrene Indeno(1,2,3-cd)pyrene Dibenzo(a,h)anthracene Benzo(g,h,i)perylene 1,4-Dioxane
		Cadmium, Total Cobalt, Total Cobalt, Total Copper, Total Mercury, Total Nickel, Total Lead, Total Lead, Total Antimony, Total Scienium, Total Tin, Total Thallium, Total Vanadium, Total Vanadium, Total	Aroclor-1250 Aroclor-1260 Aroclor-1260 INORGANICS Cyanide, Total Sulfide Silver, Total Arsenic, Total Barium, Total Beryllium, Total	PCBs Aroclor-1016 Aroclor-1221 Aroclor-1232 Aroclor-1242 Aroclor-1248 Aroclor-1254

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

dORING/ WELL I.D.	B1	B1	B2	<i>B2</i>	<i>B</i> 3	ВЗ	B3	B4	<i>B4</i>
SAMPLING DATE	10/22/91	10/22/91	10/22/91	10/22/91	10/23/91	10/23/91	10/23/91	10/23/91	10/23/91
SAMPLING DEPTH/INTERVAL	2'-4'	4'-6'	2'-4'	8'-10'	6'-8'	8'-10'	10'-12'	6'-8'	8'-10'
METALS - TCLP (mg/l)									
Silver									
Arsenic					1				
Barium					İ				
Cadmium							·		
Chromium									
						İ			
Mercury									
Lead						•			
Selenium	Di dia	DI fine	DI fine	Di flor	RL flag	RL flag	RL flag	RL flag	RL flag
VOLATILE ORGANICS (mg/kg)	RL flag	RL flag	RL flag	RL flag	_	- 1	ND 0.013 U	ND 0.012 U	ND 0.013 U
Chloromethane	ND 0.012 U	ND 0.013 U	ND 0.015 U	ND 0.066 U	ND 0.013 U	ND 0.062 U	0.013 U	ND 0.012 0	ט פוט.ט שאו
Bromomethane	·								
Vinyl Chloride									
Chloroethane	i]	'					
Methylene Chloride									
Acetone	0.022 0.012 B	0.031 0.013 B	0.025 0.015 B	0.18 0.066 B	0.041 0.013 B	ND 0.062 U	0.11 0.013 B	0.083 0.012 B	0.39 0.025 B
Carbon Disulfide						1			
1,1-Dichloroethene									
1,1-Dichloroethane									
1,2-Dichloroethene (total)									
Chloroform					ĺ				
1,2-Dichloroethane									
2-Butanone	Ì								
1,1,1-Trichloroethane	0.008 0.006	0.011 0.006	0.037 0.008	0.12 0.033	0.004 0.006 J	0.31 0.31	11 0.32	0.002 0.006 J	0.01 0.006
Carbon Tetrachloride	0.000 0.000								
Vinyl Acetate	1								
Bromodichloromethane	1					!		and the same of th	
	1.								•
1,2-Dichloropropane									
cis-1,3-Dichloropropene	0.0.006	0.072 0.006	0.32 0.008	0.5 0.033	0.039 0.006	5.6 0.31	13 0.32	0.039 0.006	0.062 0.006
Trichloroethene	0.2 0.006	0.072 0.006	0.32 0.006	0.5 0.055	0.039 0.000	5.0 0.51	13 0.32	0.039 0.000	0.002 0.000
Dibromochloromethane									
1,1,2-Trichloroethane									
Benzene									
Trans-1,3-Dichloropropene									
Bromoform									
4-Methyl-2-Pentanone									
2-Hexanone		·							
Tetrachloroethene	0.004 0.006 J	ND 0.006 U	0.008 0.008	0.021 0.033 J	0.004 0.006 J	1.5 0.31	8.9 0.32	0.004 0.006 J	ND 0.006 U
1,1,2,2-Tetrachloroethane									
Toluene	0.006 0.006	0.027 0.006	0.017 0.008	0.087 0.033	0.11 0.006	1.2 0.31	6.8 0.32	0.41 0.061	0.029 0.006
Chlorobenzene									
Ethylbenzene									
tyrene							!		
Total Xylenes		·							
Tetrahydrofuran	ND 0.006 U	0.001 0.006 J	ND 0.008 U	0.018 0.033 J	0.036 0.006	0.37 0.031	0.086 0.006	0.2 0.006	0.026 0.006
Trichlorotrifluoroethane	ND 0.012 U	0.002 0.013 J	ND 0.015 U	0.019 0.066 J	0.002 0.013 J	ND 0.062 U	0.17 0.013	ND 0.012 U	ND 0.013 U
HOMOGOMING	1 115 01012 0	1. 0.002 0.010 0	1 755 0.010 0	, 5,5.5 0,000 0	1 0.002 0.0.0	,	i erre ere e	1	

TABLE 6: SOIL ANALYTICAL RESULTS

BORING/ WELL I.D.	B1	B1	B2	B2	ВЗ	B3	<i>B</i> 3	B4	B4
SAMPLING DATE	10/22/91	10/22/91	10/22/91	10/22/91	10/23/91	10/23/91	10/23/91	10/23/91	10/23/91
SAMPLING DEPTH/INTERVAL	2'-4'	4'-6'	2'-4'	8'-10'	6'-8'	8'-10'	10'-12'	6'-8'	8'-10'
SEMI-VOLATILE ORGANICS (mg/kg)	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag
Phenol									
bis (2-Chloroethyl) Ether									
2-Chlorophenol									
1,3-Dichlorobenzene									
1,4-Dichlorobenzene									
Benzyl Alcohol									
1,2-Dichlorobenzene					į				•
2-Methylphenol									
bis (2-Chloroisopropyl) Ether								1	
4-Methylphenol									
N-Nitroso-Di-n-Propylamine									
Hexachloroethane									
Nitrobenzene									
Isophorone							*		
2-Nitrophenol									
2,4-Dimethylphenol				İ					
Benzoic Acid		·					•		
bis (2-Chloroethoxy) Methane									
2,4-Dichlorophenol									
1,2,4-Trichlorobenzene									
Naphthalene						•			
4-Chloroaniline									
Hexachlorobutadiene									
4-Chloro-3-Methylphenol					3				
2-Methylnaphthalene									
Hexachlorocyclopentadiene									
2,4,6-Trichlorophenol									
2,4,5-Trichlorophenol									
2-Chloronaphthalene									
2-Nitroaniline									
Dimethyl Phthalate									
Acenaphthylene									
2,6-Dinitrotoluene									
3-Nitroaniline									
Acenaphthene									
2,4-Dinitrophenol	•								
4-Nitrophenol							,		
Dibenzofuran									
2,4-Dinitrotoluene									
Diethylphthalate	•								
4-Chlorophenyl-phenylether									
luorene									
4-Nitroaniline								:	
4,6-Dinitro-2-Methylphenol									
N-Nitrosodiphenylamine (1)	•								

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	B1	B1	B2	B2	B3	<i>B3</i>	В3	B4	B4
SAMPLING DATE	10/22/91	10/22/91	10/22/91	10/22/91	10/23/91	10/23/91	10/23/91	10/23/91	10/23/91
SAMPLING DEPTH/INTERVAL	2'-4'	4'-6'	2'-4'	8'-10'	6'-8'	8'-10'	10'-12'	6'-8'	8'-10'
4-Bromophenyl-phenylether									
Hexachlorobenzene									
Pentachlorophenol									
Phenanthrene									
Anthracene					i			į	
Di-n-Butylphthalate									
Fluoranthene									
Pyrene									
Butylbenzylphthalate									
3,3'-Dichlorobenzidine									
Benzo (a) Anthracene									
Chrysene					·				
bis (2-Ethylhexyl) Phthalate									
Di-n-Octyl Phthalate		<u> </u>							ļ
Benzo (b) Fluoranthene						 			
Benzo (k.) Fluoranthene									
Benzo (a) Pyrene					~				
Indeno (1,2,3-cd) Pyrene									
Dibenzo (a,h) Anthracene									
Benzo (g,h,i) Perylene							ND 0 40 11	ND 0.4	ND 0 40 H
Pyridine	ND 0.4 U	0.24 0.43 J	ND 0.5 U	ND 0.44 U	ND 0.42 U	ND 0.41 U	ND 0.42 U	ND 0.4 U	ND 0.42 U
3-Picoline	ND 0.4 U	40 2.2	ND 0.5 U	ND 0.44 U	1.1 0.42	0.63 0.41	1.8 0.42	11 0.81	0.75 0.42
1-Methyl-2-pyrrolidinone	ND 0.4 U	0.61 0.43	0.16 0.5 J	0.059 0.44 J	ND 0.42 U	ND 0.41 U	ND 0.42 U	ND 0.4 U	ND 0.42 U
N,N-Dimethylacetamide	ND 0.4 U	0.31 0.43 J	ND 0.5 U	ND 0.44 U	ND 0.42 U	ND 0.41 U	0.14 0.42 J	ND O.T O	ND 0.42 U
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270
Source Document(s)	1	1	1		1	ļ	<u> </u>	<u> </u>	

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

ND Non-Detected

RL Reporting Limit

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	B4	B4	B4	В4	B4	B5	B5	<i>B</i> 5	<i>B5</i>
SAMPLING DATE	11/4/91	11/4/91	11/4/91	11/4/91	11/4/91	10/24/91	10/24/91	10/24/91	10/24/91
SAMPLING DEPTH/INTERVAL	10'-12'	12'-14'	14'-16'	16'-18'	18'-20'	2'-4'	4'-6'	6'-8'	8'-10'
METALS - TCLP (mg/l)									
Silver								!	
Arsenic									
Barium									
Cadmium									
Chromium									
Mercury									
Lead									
Selenium									
VOLATILE ORGANICS (mg/kg)	RL flag		RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag
Chloromethane	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.6 U	ND 0.24 U	ND 0.62 U	ND 0.25 U
Bromomethane									
Vinyl Chloride									
Chloroethane									
Methylene Chloride	·							10.00	
Acetone	0.028 0.012 B	0.013 0.012 B	0.019 0.012 B	0.011 0.012 JB	0.016 0.012 B	2.2 0.6 B	22 6.1 B	13 6.2 B	39 6.3 B
Carbon Disulfide									
1,1-Dichloroethene								· · · · · · · · · · · · · · · · · · ·	
1,1-Dichloroethane									
1,2-Dichloroethene (total)									
Chloroform									
1,2-Dichloroethane									
2-Butanone					ND 0 000 11	0700	140.04	400.0.4	220 6.3
1,1,1-Trichloroethane	ND 0.006 U	ND 0.006 U	0.003 0.006 J	ND 0.006 U	ND 0.006 U	0.7 0.3	140 6.1	120 3.1	220 6.3
Carbon Tetrachloride									
Vinyl Acetate									
Bromodichloromethane									
1,2-Dichloropropane									·
cis-1,3-Dichloropropene	110.0000 11	ND 0 000 11	0.000.000	ND 0 000 11	0.005.0.006.1	0000	510 12	380 12	740 32
Trichloroethene	ND 0.006 U	ND 0.006 U	0.009 0.006	ND 0.006 U	0.005 0.006 J	9.9 0.3	510 12	360 12	740 32
Dibromochloromethane									
1,1,2-Trichloroethane									
Benzene									
Trans-1,3-Dichloropropene								1	
Bromoform									
4-Methyl-2-Pentanone									
2-Hexanone	ND 0 006 II	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	1 0.3	4.5 0.12	8.9 0.31	2.8 0.13
Tetrachloroethene	ND 0.006 U	ט פטט.ט טא	ND 0.000 0	ND 0.000 0	ND 0.000 0	1 0.5	7.5 0.12	0.0 0.01	2.0 00
1,1,2,2-Tetrachloroethane	0.008 0.006	ND 0.006 U	0.012 0.006	0.005 0.006 J	0.009 0.006	100 3	130 6.1	520 12	82 6.3
Toluene	0.008 0.008	ט פטט.ט פאו	0.012 0.000	0.005 0.006 3	0.009 0.000	100 3	130 0.1	020 12	52 5.5
Chlorobenzene									
Ethylbenzene									
ożyrene									
Total Xylenes	0.01 0.006	0.002 0.006 J	ND 0.006 U	0.004 0.006 J	0.004 0.006 J	0.063 0.3 J	ND 0.12 U	ND 0.31 U	2.5 0.13
Tetrahydrofuran	ND 0.012 U	I	ND 0.006 U	ND 0.012 U	ND 0.012 U	ND 0.6 U	0.62 0.24	6.3 0.62	0.28 0.25
Trichlorotrifluoroethane	1 140 0.012 0	140 0.012 0	ND 0.012 0	140 0.012 0	1 110 0.012 0	1 145 010 0	SIGE GIET	3.0 3.52	,

TABLE 6: SOIL ANALYTICAL RESULTS

ಶ O RING/ WELL I.D.	B4		B4		B4		B4		B4		<i>B5</i>	<i>B5</i>	B5	B5	
SAMPLING DATE	11/4/91		11/4/91		11/4/91		11/4/91		11/4/9	91	10/24/91	10/24/91	10/24/91	10/24/	
SAMPLING DEPTH/INTERVAL	10'-12'		12'-14'		14'-16'		<i>16'-18'</i>		18'-20		2'-4'	4'-6'	6'-8'	8'-10)'
SEMI-VOLATILE ORGANICS (mg/kg)	RL	flag	RL	flag	RL f	flag	RL	flag	RL	flag	RL flag	RL flag	RL flag	RL	flag
Phenol													•		
bis (2-Chloroethyl) Ether															
2-Chlorophenol								1		•					
1,3-Dichlorobenzene															
1,4-Dichlorobenzene															
Benzyl Alcohol														i	
1,2-Dichlorobenzene															
2-Methylphenol				İ											
bis (2-Chloroisopropyl) Ether															
4-Methylphenol															
N-Nitroso-Di-n-Propylamine Hexachloroethane											·			:	
Nitrobenzene															
Isophorone															
2-Nitrophenol												•		İ	
2,4-Dimethylphenol															
Benzoic Acid															
bis (2-Chloroethoxy) Methane															
2,4-Dichlorophenol															
1,2,4-Trichlorobenzene					•										
Naphthalene															
4-Chloroaniline															
H e xachlorobutadiene															
4-Chloro-3-Methylphenol															
2-Methylnaphthalene															
Hexachlorocyclopentadiene															
2,4,6-Trichlorophenol															
2,4,5-Trichlorophenol							-6								
2-Chloronaphthalene															
2-Nitroaniline				j										Į	
Dimethyl Phthalate									:						
Ac enaphthylene															
2,6-Dinitrotoluene												:			
3-Nitroaniline															
Acenaphthene															
2,4-Dinitrophenol															
4-Nitrophenol									:						
Dilbenzofuran															
2,4-Dinitrotoluene	•														
Diethylphthalate				-											
4-Chlorophenyl-phenylether															
.worene															
4-Nitroaniline												-			
4,6-Dinitro-2-Methylphenol				.								•			
N-Nitrosodiphenylamine (1)									1			,			

TABLE 6: SOIL ANALYTICAL RESULTS

JORING/ WELL I.D.	B4	B4	B4	B4	B4	<i>B5</i>	<i>B5</i>	B5	<i>B5</i> .
SAMPLING DATE	11/4/91	11/4/91	11/4/91	11/4/91	11/4/91	10/24/91	10/24/91	10/24/91	10/24/91
SAMPLING DEPTH/INTERVAL	10'-12'	12'-14'	14'-16'	16'-18'	18'-20'	2'-4'	4'-6'	6'-8'	8'-10'
4-Bromophenyl-phenylether			·						
Hexachlorobenzene									
Pentachlorophenol									
Phenanthrene									
Anthracene									
Di-n-Butylphthalate									
Fluoranthene	į								
Pyrene									,
Butylbenzylphthalate									
3,3'-Dichlorobenzidine									
Benzo (a) Anthracene						: 			
Chrysene	1								
bis (2-Ethylhexyl) Phthalate									
Di-n-Octyl Phthalate									
Benzo (b) Fluoranthene									
Benzo (k.) Fluoranthene									
Benzo (a) Pyrene									
Indeno (1,2,3-cd) Pyrene									
Dibenzo (a,h) Anthracene									
Benzo (g,h,i) Perylene									
Pyri di ne	ND 0.4 U	ND 0.39 U		ND 0.4 U		31 8	83 20	330 21	280 42
3-Picoline	0.47 0.4	ND 0.39 U		0.15 0.4 J		330 20	410 20	1400 83	1300 420
1-Methyl-2-pyrrolidinone	ND 0.4 U	ND 0.39 U		ND 0.4 U		13 8	31 4.1	52 8.3	64 8.4
N,N-Dimethylacetamide	ND 0.4 U	ND 0.39 U		ND 0.4 U		1.8 8 J	320 20	3400 410	5200 420
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270
Source Document(s)	1	1	1	1	1] 1	1	1]

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

ND Non-Detected

RL Reporting Limit

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	B5	<i>B6</i>	B6	B8	B8	MW-1	MW-1	MW-2	MW-2	MW-3
SAMPLING DATE	10/24/91	10/25/91	10/25/91	10/23/91	10/23/91	10/24/91	10/24/91	10/24/91	10/24/91	10/25/91
SAMPLING DEPTH/INTERVAL	10'-12'	8'-10'	4'-6'	2'-4'	8'-10'	4'-6'	6'-8'	6'-8'	10'-12'	4'-6'
METALS - TCLP (mg/l)			₹							
Silver			,							
Arsenic										
Barium										
Cadmium										
Chromium										
Mercury										
Lead										
Selenium										
VOLATILE ORGANICS (mg/kg)	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL. flag	RL flag	RL flag
Chloromethane	ND 0.25 U	ND 0.064 U	ND 0.25 U	ND 0.25 U	ND 0.13 U	ND 0.12 U	ND 0.25 U	ND 0.25 U	ND 0.25 U	ND 0.13 U
Bromomethane										
Vinyl Chloride										
Chloroethane								•		
Methylene Chloride								,		
Acetone	ND 0.25 U	0.048 0.064 J	2.2 0.25 B	ND 0.25 U	0.43 0.13 B	0.057 0.12 JB	0.37 0.25 B	3.4 0.25 B	0.85 0.25 B	0.31 0.13 B
Carbon Disulfide								,		
1,1-Dichloroethene										
1,1-Dichloroethane										
1,2-Dichloroethene (total)		,								
Chloroform										
1,2-Dichloroethane						·				
2-Butanone										
1,1,1-Trichloroethane	420 12	ND 0.032 U	ND 0.12 U	ND 0.13 U	ND 0.063 U	0.038 0.062 J	ND 0.12 U	0.46 0.12	0.52 0.12	0.027 0.066 J
Carbon Tetrachloride					7.2 0.000 °C	0.000		0.70 0.72	0.02 02	0.027 0.000
Vinyl Acetate										
Bromodichloromethane										
1,2-Dichloropropane										
cis-1,3-Dichloropropene										
Trichloroethene	530 31	0.047 0.032	0.11 0.12 J	ND 0.13 U	13 0.32	0.6 0.062	0.8 0.12	8.4 0.31	5.2 0.31	0.34 0.066
Dibromochloromethane		01017 01002	0111 0112 0	110 0.10	10 0.02	0.0 0.002	0.0 0.12	0.70.01	0.2 0.01	0.047 0.000
1,1,2-Trichloroethane										
Benzene										
Trans-1,3-Dichloropropene										
Bromoform										
4-Methyl-2-Pentanone										
2-Hexanone										
Tetrachloroethene	ND 0.12 U	ND 0.032 U	ND 0.12 U	ND 0.13 U	4.7 0.32	ND 0.062 U	ND 0.12 U	0.61 0.12	0.4 0.12	ND 0.066 U
1,1,2,2-Tetrachloroethane	145 0.12 0	110 0.002 0	110 0.12 0	140 0.15 0	4.7 0.02	ND 0.002 0	140 0.12 0	0.01 0.12	0.4 0.12	145 0.000 0
Toluene	320 12	0.036 0.032	5.7 0.62	6.9 1.3	0.85 0.063	0.54 0.062	2.3 0.12	3.5 0.12	2.3 0.12	0.46 0.066
Chlorobenzene	020 12	0.000 0.002	0.7 0.02	0.0 1.0	0.03 0.003	0.54 0.002	2.0 0.12	3.5 0.12	2.0 0.12	0.40 0.000
Ethylbenzene										
tyrene Total Xylenes				•						
·	0.74 0.12	0.97 0.032	3.4 0.12	16 1.3	2.4 0.063	0.36 0.063	0.21.0.12	14012	0.06.0.12	1 5 0 000
Tetrahydrofuran						0.36 0.062	0.31 0.12	1.4 0.12	0.96 0.12	1.5 0.066
Trichlorotrifluoroethane	2.3 0.25	ND 0.064 U	ND 0.25 U	ND 0.25 U	0.43 0.13	ND 0.12 U	ND 0.25 U	ND 0.25 U	ND 0.25 U	ND 0.13 U

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

øORING/ WELL I.D.	<i>B</i> 5	B6	В6	B8	B8	MW-1	MW-1	MW-2	MW-2	MW-3
SAMPLING DATE	10/24/91	10/25/91	10/25/91	10/23/91	10/23/91	10/24/91	10/24/91	10/24/91	10/24/91	10/25/91
SAMPLING DEPTH/INTERVAL	10'-12'	8'-10'	4'-6'	2'-4'	8'-10'	4'-6'	6'-8'	6'-8'	10'-12'	4'-6'
SEMI-VOLATILE ORGANICS (mg/kg) Phenol bis (2-Chloroethyl) Ether 2-Chlorophenol 1,3-Dichlorobenzene 1,4-Dichlorobenzene Benzyl Alcohol 1,2-Dichlorobenzene 2-Methylphenol bis (2-Chloroisopropyl) Ether 4-Methylphenol N-Nitroso-Di-n-Propylamine	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag
Hexachloroethane Nitrobenzene					·				•	
Isophorone 2-Nitrophenol										
2,4-Dimethylphenol									ļ	
Benzoic Acid										
bis (2-Chloroethoxy) Methane										
2,4-Dichlorophenol										
1,2,4-Trichlorobenzene										
Naphthalene										
4-Chloroaniline										
Hexachlorobutadiene										
4-Chloro-3-Methylphenol		_								
2-Methylnaphthalene		-								
Hexachlorocyclopentadiene 2,4,6-Trichlorophenol					•			-		
2,4,5-Trichlorophenol										·
2-Chloronaphthalene		·								
2-Nitroaniline	•	r								
Dimethyl Phthalate										
Acenaphthylene						ī				
2,6-Dinitrotoluene										
3-Nitroaniline										
Acenaphthene										
2,4-Dinitrophenol										
4-Nitrophenol										
Dibenzofuran										
2,4-Dinitrotoluene										
Diethylphthalate										
4-Chlorophenyl-phenylether										
.uorene										
4-Nitroaniline										
4,6-Dinitro-2-Methylphenol										
N-Nitrosodiphenylamine (1)								1		

TABLE 6: SOIL ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO, IL

₫ORING/ WELL I.D.	B5	B6	<i>B6</i>	<i>B8</i>	B8	MW-1	MW-1	MW-2	MW-2	MW-3
SAMPLING DATE	10/24/91	10/25/91	10/25/91	10/23/91	10/23/91	10/24/91	10/24/91	10/24/91	10/24/91	10/25/91
SAMPLING DEPTH/INTERVAL	10'-12'	8'-10'	4'-6'	2'-4'	8'-10'	4'-6'	6'-8'	6'-8'	10'-12'	4'-6'
4-Bromophenyl-phenylether										
Hexachlorobenzene										
Pentachlorophenol		,								
Phenanthrene										
Anthracene										
Di-n-Butylphthalate										
Fluoranthene										
Pyrene										
Butylbenzylphthalate										
3,3'-Dichlorobenzidine										
Benzo (a) Anthracene										
Chrysene										
bis (2-Ethylhexyl) Phthalate										
Di-n-Octyl Phthalate	1									
Benzo (b) Fluoranthene										
Benzo (k)Fluoranthene		,			·					
Benzo (a) Pyrene										
Indeno (1,2,3-cd) Pyrene										
Dibenzo (a,h) Anthracene										
Benzo (g,h,i) Perylene									:	
Pyridine	120 8.3	0.78 2.1 J	2.7 4.1 J	ND 0.42 U	ND 4.2 U	1.8 4.1 J	0.093 0.41 J	2.5 8.2 J	17 4.1	ND 0.43 U
3-Picoline	660 42	ND 2.1 U	ND 4.1 U	4.2 0.42	ND 4.2 U	39 4.1	5.4 0.41	570 41	310 21	ND 0.43 U
1-Methyl-2-pyrrolidinone	310 21	8.3 2.1	70 4.1	ND 0.42 U	ND 4.2 U	1.2 4.1 J	ND 0.41 U	13 8.2	17 4.1	1.6 0.43
N,N-Dimethylacetamide	3000 420	590 100	1800 410	ND 0.42 U	ND 4.2 U	1.5 4.1 J	0.083 0.41 J	2500 410	2600 210	70 8.7
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270
Source Document(s)	1	1	1	1	1	1	1	1	1	11

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

ND Non-Detected

RL Reporting Limit

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	MW-3	SB-4	SB-4 RERUN	SB-4	SB-4 DUP4	SB-5	SB-5 DUP3	SB-5	SB-6
SAMPLING DATE	10/25/91	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/6/93
SAMPLING DEPTH/INTERVAL	10'-12'	5-6'	<i>5-6'</i>	16.5-17'	17-18'	8.5-9.5'	9.5-10'	18.5-20'	<i>6-7'</i>
METALS - TCLP (mg/l)		5.5-6' RL flag			17.5-18' RL flag	<i>9-9.5</i> ' RL flag	9.5-10' RL flag	19-20' RL flag	6.5-7' RL flag
Silver		ND 0.05 U			ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Arsenic		ND 0.1 U			ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U
Barium		. ND 0.5 U			0.72 0.5	ND 0.5 U	ND 0.5 U	0.75 0.5	ND 0.5 U
Cadmium		³ ND 0.05 U			ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Chromium		ND 0.05 U			ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Mercury		ND 0.01 U			ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Lead	1	ND 0.05 U			ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Selenium		ND 0.1 U			ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U
VOLATILE ORGANICS (mg/kg)	RL flag	5-5.5' RL flag		16.5-17' RL flag	17-17.5' RL flag	8,5-9' RL flag		18.5-19' RL flag	6-6.5' RL flag
Chloromethane	ND 0.012 U	ND 0.012 U		ND 0.011 U	ND 0.011 U	ND 0.012 U		ND 0.012 U	ND 0.012 U
Bromomethane		ND 0.012 U	•	ND 0.011 U	ND 0.011 U	ND 0.012 U		ND 0.012 U	ND 0.012 U
Vinyl Chloride		ND 0.012 U		0.022 0.011	ND 0.011 U	ND 0.012 U		ND 0.012 U	ND 0.012 U
Chloroethane		ND 0.012 U		ND 0.011 U	ND 0.011 U	ND 0.012 U	•	ND 0.012 U	ND 0.012 U
Methylene Chloride		0.23 0.06		0.075 0.028	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Acetone	0.31 0.012	1.8 0.12		0.44 0.056	0.18 0.056 B	0.2 0.06 B		0.37 0.12 B	0.019 0.012
Carbon Disulfide		0.17 0.006		0.029 0.006	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
1,1-Dichloroethene		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
1,1-Dichloroethane		0.03 0.006		0.012 0.006	ND 0.006 U	0.01 0.006		ND 0.006 U	ND 0.006 U
1,2-Dichloroethene (total)		0.16 0.006		0.3 0.006	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Chloroform		0.21 0.006		0.15 0.028	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
1,2-Dichloroethane		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
2-Butanone		0.11 0.012		0.029 0.011	ND 0.011 U	ND 0.012 U		ND 0.012 U	ND 0.012 U
1,1,1-Trichloroethane	0.011 0.006	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Carbon Tetrachloride		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Vinyl Acetate		ND 0.012 U		ND 0.011 U	ND 0.011 U	ND 0.012 U		ND 0.012 U	ND 0.012 U
Bromodichloromethane		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
1,2-Dichloropropane		0.012 0.006		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
cis-1,3-Dichloropropene		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Trichloroethene	0.055 0.006	0.096 0.006		0.051 0.006	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Dibromochloromethane		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
1,1,2-Trichloroethane		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Benzene		1.5 0.06		0.6 0.028	0.006 0.006	0.031 0.006		ND 0.006 U	ND 0.006 U
Trans-1,3-Dichloropropene		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Bromoform		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
4-Methyl-2-Pentanone		0.71 0.12		0.22 0.056	ND 0.011 U	ND 0.012 U		ND 0.012 U	ND 0.012 U
2-Hexanone		ND 0.012 U		ND 0.011 U	ND 0.011 U	ND 0.012 U		ND 0.012 U	ND 0.012 U
Tetrachloroethene	ND 0.006 U	0.019 0.006		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
1,1,2,2-Tetrachloroethane		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Toluene	0.031 0.006	28 0.6		0.48 0.028	0.006 0.006	ND 0.006 U		ND 0.006 U	ND 0.006 U
Chlorobenzene	1 3.337 3.330	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ļ	ND 0.006 U	ND 0.006 U
Ethylbenzene		0.24 0.06		0.07 0.006	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
styrene		ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Total Xylenes		0.21 0.06		0.066 0.006	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Tetrahydrofuran	0.03 0.006	5.1 0.6		1.7 0.028	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U
Trichlorotrifluoroethane	ND 0.012 U	ND 0.012 U		ND 0.011 U	ND 0.000 U	ND 0.012 U		ND 0.012 U	ND 0.012 U

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

dORING/ WELL I.D.	MW-3	SB-4	SB-4 RERUN	SB-4	SB-4 DUP	4	SB-5		SB-5 DUP3	<i>SB-5</i>	SB-6
SAMPLING DATE	10/25/91	12/7/93	12/7/93	12/7/93	12/7/93		12/7/93		12/7/93	12/7/93	12/6/93
SAMPLING DEPTH/INTERVAL	10'-12'	5-6'	5-6'	16.5-17'	17-18'		8.5-9.5'		9.5-10'	18.5-20'	6-7'
SEMI-VOLATILE ORGANICS (mg/kg)	RL flag	5.5-6' RL flag	5.5-6'		17.5-18 RL	flag	<i>9-9.5"</i> RL	flag	9.5-10' RL flag		ag <i>6.5-7</i> ′ RL f
Phenol		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
bis (2-Chloroethyl) Ether		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
2-Chlorophenol		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
1,3-Dichlorobenzene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
1,4-Dichlorobenzene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 (
Benzyl Alcohol		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
1,2-Dichlorobenzene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
2-Methylphenol		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
bis (2-Chloroisopropyl) Ether		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 U
4-Methylphenol		0.05 0.41 J	0.82 0.41		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42 I
N-Nitroso-Di-n-Propylamine		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42
Hexachloroethane		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42
Nitrobenzene		ND 0.41 U	ND 0.41 U		ND 0.38	Ū	ND 0.41	Ū	ND 0.41 U		J ND 0.42
Isophorone		ND 0.41 U	ND 0.41 U		ND 0.38	Ü	ND 0.41	U	ND 0.41 U	ND 0.4	J ND 0.42
2-Nitrophenol		ND 0.41 U	ND 0.41 U		ND 0.38	Ū	ND 0.41	Ū	ND 0.41 U		J ND 0.42
2,4-Dimethylphenol		ND 0.41 U	ND 0.41 U		ND 0.38	Ü	ND 0.41	Ū	ND 0.41 U		J ND 0.42
Benzoic Acid		ND 2.1 U	0.062 2.1 J		ND 1.9	Ŭ	ND 2	Ü	ND 2 U		J ND 2.1
bis (2-Chloroethoxy) Methane		ND 0.41 U	ND 0.41 U		ND 0.38	Ü	ND 0.41	Ü	ND 0.41 U		U ND 0.42
2,4-Dichlorophenol		ND 0.41 U	ND 0.41 U		ND 0.38	Ü	ND 0.41	Ŭ	ND 0.41 U		U ND 0.42
1,2,4-Trichlorobenzene		ND 0.41 U	ND 0.41 U		ND 0.38	Ü	ND 0.41	Ü	ND 0.41 U		U ND 0.42
Naphthalene		ND 0.41 U	0.058 0.41 J		ND 0.38	Ŭ	ND 0.41	Ŭ	ND 0.41 U		U ND 0.42
4-Chloroaniline		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U		U ND 0.42
Hexachlorobutadiene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U		U ND 0.42
4-Chloro-3-Methylphenol		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	Ü	ND 0.41 U		U ND 0.42
• -		ND 0.41 U	0.046 0.41 J		0.059 0.38	1	ND 0.41	Ü	ND 0.41 U		U ND 0.42
2-Methylnaphthalene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U		U ND 0.42
Hexachlorocyclopentadiene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	Ü	ND 0.41 U		U ND 0.42
2,4,6-Trichlorophenol		ND 2.1 U	ND 0.41 U		ND 1.9	U	ND 2	U	ND 0.41 0		U ND 2.1
2,4,5-Trichlorophenol		1	ND 0.41 U		ND 0.38	- 11	ND 0.41	U	ND 0.41 U		U ND 0.42
2-Chloronaphthalene		ND 0.41 U				- 11	ND 0.41	11	ND 0.41 U	ND 0.4 ND 2	U ND 2.1
2-Nitroaniline		ND 2.1 U	ND 2.1 U		ND 1.9	U	i .	U	ND 2 0 ND 0.41 U		U ND 0.42
Dimethyl Phthalate		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U			
Acenaphthylene		ND 0.41 U	ND 0.41 U	E	ND 0.38	U	ND 0.41	U	ND 0.41 U		
2,6-Dinitrotoluene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U		U ND 0.42
3-Nitroaniline		ND 2.1 U	ND 2.1 U		ND 1.9	U	ND 2	U	ND 2 U	ND 2	U ND 2.1
Acenaphthene		ND 0.41 U	ND 0.41 U		ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	U ND 0.42
2,4-Dinitrophenol		ND 2.1 U	ND 2.1 U		ND 1.9	U	ND 2	υ	ND 2 U	ND 2	U ND 2.1
4-Nitrophenol		ND 2.1 U	ND 2.1 U	J	ND 1.9	U	ND 2	U	ND 2 U	ND 2	U ND 2.1
Dibenzofuran		ND 0.41 U	ND 0.41 U	J	ND 0.38	U	ND 0.41	U	ND 0.41 U		U ND 0.42
2,4-Dinitrotoluene		ND 0.41 U	ND 0.41 U	J	ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	U ND 0.42
Diethylphthalate		ND 0.41 U	ND 0.41 U	J	ND 0.38	U	ND 0.41	· U	ND 0.41 U	ND 0.4	U ND 0.42
4-Chlorophenyl-phenylether		ND 0.41 U	ND 0.41 U	J	ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	U ND 0.42
,uorene		ND 0.41 U	ND 0.41 U	J	ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	U ND 0.42
4-Nitroaniline		ND 2.1 U	ND 2.1	J	ND 1.9	U	ND 2	U	ND 2 U	ND 2	U ND 2.1
4,6-Dinitro-2-Methylphenol		ND 2.1 U	ND 2.1	J	ND 1.9	U	ND 2	U	ND 2 U	ND 2	U ND 2.1
N-Nitrosodiphenylamine (1)		ND 0.41 U	ND 0.41 U]	ND 0.38	U	ND 0.41	U	ND 0.41 U	ND 0.4	U ND 0.42

TABLE 6:
SOIL ANALYTICAL RESULTS
AFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	MW-3	SB-4	SB-4 RERUN	SB-4	SB-4 DUP4	SB-5	SB-5 DUP3	SB-5	SB-6
SAMPLING DATE	10/25/91	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/6/93
SAMPLING DEPTH/INTERVAL	10'-12'	5-6'	5-6'	<i>16.5-17'</i>	17-18'	8.5-9.5'	9.5-10'	18.5-20'	6-7'
4-Bromophenyl-phenylether		ND 0.41 U	ND 0.41 U		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Hexachlorobenzene		ND 0.41 U	ND 0.41 U		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Pentachlorophenol		ND 2.1 U	ND 2.1 U		ND 1.9 U	ND 2 U	ND 2 U	ND 2 U	ND 2.1 U
Phenanthrene	·	ND 0.41 U	0.05 0.41 J		0.07 0.38 J	0.063 0.41 J	0.057 0.41 J	ND 0.4 U	ND 0.42 U
Anthracene		ND 0.41 U	ND 0.41 U		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Di-n-Butylphthalate		ND 0.41 U	0.33 0.41 J		0.17 0.38 JB	0.14 0.41 JB	0.17 0.41 JB	0.15 0.4 JB	0.12 0.42 JB
Fluoranthene		ND 0.41 U	0.21 0.41 J		ND 0.38 U	0.063 0.41 J	ND 0.41 U	ND 0.4 U	ND 0.42 U
Pyrene		ND 0.41 U	0.22 0.41 J		ND 0.38 U	0.063 0.41 J	ND 0.41 U	ND 0.4 U	ND 0.42 U
Butylbenzylphthalate		ND 0.41 U	ND 0.41 U		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
3,3'-Dichlorobenzidine		ND 0.83 U	ND 0.83 U		ND 0.77 U	ND 0.81 U	ND 0.81 U	ND 0.81 U	ND 0.84 U
Benzo (a) Anthracene		ND 0.41 U	0.087 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Chrysene		ND 0.41 U	0.095 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
bis (2-Ethylhexyl) Phthalate		ND 0.41 U	0.087 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Di-n-Octyl Phthalate		ND 0.41 U	ND 0.41 U		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Benzo (b) Fluoranthene		ND 0.41 U	0.12 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Benzo (k.) Fluoranthene		ND 0.41 U	0.087 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Benzo (a) Pyrene		ND 0.41 U	0.046 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Indeno (1,2,3-cd) Pyrene		ND 0.41 U	ND 0.41 U		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Dibenzo (a,h) Anthracene		ND 0.41 U	ND 0.41 U		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Benzo (g,h,i) Perylene		ND 0.41 U	0.058 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U
Pyridine	ND 0.39	ND 2.1 U	ND 2.1 U		ND 1.9 U	ND 2 U	ND 2 U	ND 2 U	ND 2.1 U
3-Picoline	ND 0.39	8.5 0.41	9.7 0.41		0.095 0.38 J	ND 0.41 U	ND 0.41 U	ND 0.4 U	0.37 0.42 J
1-Methyl-2-pyrrolidinone	0.27 0.39 J	ND 0.83 U	ND 0.83 U		ND 0.77 U	ND 0.81 U	ND 0.81 U	ND 0.81 U	ND 0.84 U
N,N-Dimethylacetamide	10 2								
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240 &8270	8240	8240	8240	8240	8240	8240	8240	8240
Source Document(s)	11	2	2	2	2	2	2	2	2

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

ND Non-Detected

RL Reporting Limit

FABLE 6: SOIL ANALYTICAL RESULTS

JORING/ WELL I.D.	SB-6	SB-6 RERUN	<i>SB</i> -7	<i>SB</i> -7	SB-7 DUP5	SB-8	SB-8	SB-8	SB-9
SAMPLING DATE	12/6/93	12/6/93	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93	12/6/93
SAMPLING DEPTH/INTERVAL	17.5-18.5'	17.5-18	8-8.5'	11.5-12'	12.5-13'	7.5-8.5'	17.5-18.5'	19.5-20'	8-9'
METALS - TCLP (mg/l)	18-18.5' RL flag		8.5-9' RL flag	12-12.5' RL flag	12.5-13' RL flag	8-8.5' RL flag	18-18.5' RL flag	20-20.5' RL flag	8.5-9' RL flag
Silver	ND 0.05 U		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Arsenic	ND 0.1 U		ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U
Barium	1.3 0.5		ND 0.5 U	0.69 0.5	0.87 0.5	ND 0.5 U	ND 0.5 U	ND 0.5 U	1.8 0.5
Cadmium	ND 0.05 U		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Chromium	ND 0.05 U		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Mercury	ND 0.01 U		ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Lead	ND 0.05 U		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U
Selenium	ND 0.1 U		ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U
VOLATILE ORGANICS (mg/kg)	17.5-18' RL flag	17.5-18' RL flag	8-8.5' RL flag	11.5-12' RL flag		7.5-8' RL. flag	17.5-18' RL flag	19.5-20' RL flag	8-8.5' RL flag
Chloromethane	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 Û	ND 0.012 U
Bromomethane	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U
Vinyl Chloride	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U
Chloroethane	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U		0.03 0.012	0.068 0.011	ND 0.012 U	ND 0.012 U
Methylene Chloride	ND 0.006 U	ND 0.006 U	0.009 0.006 B	0.036 0.006 B		0.007 0.006 B	0.14 0.006 B	0.14 0.006 B	ND 0.006 U
Acetone	0.053 0.012	0.12 0.012	0.66 0.12 B	1.8 0.58		0.029 0.012 B	ND 0.011 U	ND 0.012 U	0.04 0.012
Carbon Disulfide	ND 0.006 U	ND 0.006 U	0.004 0.006 J	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,1-Dichloroethene	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,1-Dichloroethane	ND 0.006 U	ND 0.006 U	0.048 0.006	ND 0.006 U		0.006 0.006	6.1 0.11	0.7 0.058	0.017 0.006
1,2-Dichloroethene (total)	ND 0.006 U	ND 0.006 U	0.043 0.006	ND 0.006 U		ND 0.006 U	0.026 0.006	0.007 0.006	0.005 0.006 J
Chloroform	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,2-Dichloroethane	ND 0.006 U	ND 0.006 U	ND 0.006 U	0.024 0.006		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
2-Butanone	ND 0.012 U	ND 0.012 U	0.037 0.012	0.2 0.012		ND 0.012 U	0.014 0.011	ND 0.012 U	ND 0.012 U
1,1,1-Trichloroethane	ND 0.006 U	ND 0.006 U	0.006 0.006	ND 0.006 U		ND 0.006 U	1.2 0.11	0.2 0.006	ND 0.006 U
Carbon Tetrachloride	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Vinyl Acetate	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U
Bromodichloromethane	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,2-Dichloropropane	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
cis-1,3-Dichloropropene	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Trichloroethene	ND 0.006 U	ND 0.006 U	0.004 0.006 J	ND 0.006 U		ND 0.006 U	17 5.6	2.4 0.058	ND 0.006 U
Dibromochloromethane	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,1,2-Trichloroethane	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	0.007 0.006	ND 0.006 U	ND 0.006 U
Benzene	ND 0.006 U	ND 0.006 U	0.11 0.006	0.38 0.29		0.024 0.006	0.022 0.006	0.004 0.006 J	0.006 0.006
Trans-1,3-Dichloropropene	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Bromoform	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
4-Methyl-2-Pentanone	ND 0.012 U	ND 0.012 U	0.26 0.12	0.023 0.012		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U
2-Hexanone	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U
Tetrachloroethene	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	16 5.6	1.8 0.058	ND 0.006 U
1,1,2,2-Tetrachloroethane	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Toluene	ND 0.006 U	ND 0.006 U	0.17 0.006	0.74 0.29		1.7 0.06	25 5.6	2.1 0.058	0.003 0.006 J
Chlorobenzene	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Ethylbenzene	ND 0.006 U	ND 0.006 U	2 0.058	1.4 0.29		ND 0.006 U	0.025 0.006	ND 0.006 U	ND 0.006 U
yrene	ND 0.006 U	ND 0.006 U	0.006 0.006	3.5 0.29		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Total Xylenes	ND 0.006 U	ND 0.006 U	0.28 0.058	0.071 0.006		ND 0.006 U	0.083 0.006	0.014 0.006	ND 0.006 U
Tetrahydrofuran	NÐ 0.006 U	ND 0.006 U	1.7 0.29	0.21 0.006		6.9 0.3	0.26 0.006	0.091 0.006	ND 0.006 U
Trichlorotrifluoroethane	ND 0.012 U	ND 0.012 U	0.26 0.12	24 2.3		ND 0.012 U	260 11	24 12	ND 0.012 U

TABLE 6:
30IL ANALYTICAL RESULTS
AFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	SB-6	SB-6 RERUN	SB-7		SB-7	······································	SB-7 DUP5		SB-8		SB-8	· · · · · · · · · · · · · · · · · · ·	SB-8		SB-9	
SAMPLING DATE	12/6/93	12/6/93	12/8/93		12/8/93		12/8/93		12/8/93		12/8/93		12/8/9	3	12/6/93	<i>j</i>
SAMPLING DEPTH/INTERVAL	17.5-18.5'	17.5-18	8-8.5'		11.5-12'		1,2.5-13'		7.5-8.5		17.5-18.5	,	19.5-20)'	8-9'	
GEMI-VOLATILE ORGANICS (mg/kg)	18-18.5' RL flag		8.5-9' RL	flag	12-12.5' RL	flag	12.5-13' RL	flag	8-8.5' RL	flag	18-18.5' RL	flag	20-20.5' RL	flag	8.5-9' RL	flag
Phenol	ND 0.4 U		ND 0.4	U	4.1 0.4		1.6 0.4		2.6 0.41		ND 0.4	U	ND 0.3	9 U	ND 0.42	U
bis (2-Chloroethyl) Ether	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	9 U	ND 0.42	U
2-Chlorophenol	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	υ	ND 0.41	U	ND 0.4	U	ND 0.3	9 U	ND 0.42	
1,3-Dichlorobenzene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	9 U	ND 0.42	U
1,4-Dichlorobenzene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	19 U	ND 0.42	U
Benzyl Alcohol	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	19 U	ND 0.42	U
1,2-Dichlorobenzene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	19 U	ND 0.42	U
2-Methylphenol	ND 0.4 U		ND 0.4	U	0.06 0.4	J	ND 0.4	U	ND 0.41	Ų	ND 0.4	U	ND 0.3	19 U	ND 0.42	U
bis (2-Chloroisopropyl) Ether	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	19 U	ND 0.42	U
4-Methylphenol	ND 0.4 U		0.18 0.4	J	ND 0.4	U	ND 0.4	U	0.46 0.41		ND 0.4	U	ND 0.3	39 U	ND 0.42	U
N-Nitroso-Di-n-Propylamine	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	39 U	ND 0.42	. U
Hexachloroethane	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3		ND 0.42	
Nitrobenzene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3		ND 0.42	
Iso p horone	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3		ND 0.42	. U
2-Nitrophenol	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	39 U	ND 0.42	. U
2,4-Dimethylphenol	ND 0.4 U		0.6 0.4		ND 0.4	U	ND 0.4	U	0.86 0.41		ND 0.4	U	ND 0.0	39 U	ND 0.42	U
Benzoic Acid	ND 2 U	•	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U
bis (2-Chloroethoxy) Methane	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.:	39 U	ND 0.42	
2,4-Dichlorophenol	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.3	39 U	ND 0.42	1 U
1,2,4-Trichlorobenzene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.	39 U	ND 0.42	2 U
Naphthalene	ND 0.4 U		0.14 0.4	J	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.	39 U	ND 0.42	2 U
4-Chloroaniline	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
Hexachlorobutadiene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
4-Chloro-3-Methylphenol	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
2-Methylnaphthalene	0.046 0.4 J		0.11 0.4	J	0.045 0.4	J	0.047 0.4	J	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
Hexachlorocyclopentadiene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
2,4,6-Trichlorophenol	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.	39 U	ND 0.42	2 U
2,4,5-Trichlorophenol	ND 2 U		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U
2-Chloronaphthalene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	<u> 1</u>
2-Nitroaniline	ND 2 U		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U .	ND 2	U	ND 2.1	U
Dimethyl Phthalate	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	MD 0.		ND 0.42	
Acenaphthylene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
2,6-Dinitrotoluene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	IJ	ND 0.		ND 0.42	2 U
3-Nitroaniline	ND 2 U		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U
Acenaphthene	ND 0.4 U		0.12 0.4	J	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	2 U
2,4-Dinitrophenol	ND 2 U		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U
4-Nitrophenol	ND 2 U		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U
Di be nzofuran	ND 0.4 U		0.067 0.4	J	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
2,4-Dinitrotoluene	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
Diethylphthalate	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	IJ	ND 0.		ND 0.42	
 Chlorophenyl-phenylether 	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U .	ND 0.		ND 0.42	
, u o rene	ND 0.4 U		0.15 0.4	J	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.		ND 0.42	
4-Nitroaniline	ND 2 U		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U
4,6-Dinitro-2-Methylphenol	ND 2 U		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U
N-Nitrosodiphenylamine (1)	ND 0.4 U		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.	39 U	ND 0.42	2 U

TABLE 6:
SOIL ANALYTICAL RESULTS
AFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	SB-6	SB-6 RERUN	SB-7	SB-7	SB-7 DUP5	SB-8	SB-8	SB-8	SB-9
SAMPLING DATE	12/6/93	12/6/93	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93	12/6/93
SAMPLING DEPTH/INTERVAL	17.5-18.5'	17.5-18	8-8.5'	11.5-12'	12.5-13'	7.5-8.5'	17.5-18.5'	19.5-20'	8-9'
4-Bromophenyl-phenylether	ND 0.4 U		ND 0.4 U	ND 0.4 U	ND 0.4 U	ND 0.41 U	ND 0.4 U	ND 0.39 U	ND 0.42 U
Hexachlorobenzene	ND 0.4 U		ND 0.4 U	ND 0.4 U	ND 0.4 U	ND 0.41 U	ND 0.4 U	ND 0.39 U	ND 0.42 U
Pentachlorophenol	ND 2 U		ND 2 U	ND 2.1 U					
Phenanthrene	ND 0.4 U		0.57 0.4	0.18 0.4 J	0.21 0.4 J	0.046 0.41 J	ND 0.4 U	ND 0.39 U	0.41 0.42 J
Anthracene	ND 0.4 U		0.14 0.4 J	0.044 0.4 J	0.051 0.4 J	ND 0.41 U	ND 0.4 U	ND 0.39 U	0.064 0.42 J
Di-n-Butylphthalate	0.11 0.4 JB		0.37 0.4 JB	0.24 0.4 JB	0.2 0.4 JB	0.28 0.41 JB	0.22 0.4 JB	0.24 0.39 JB	0.14 0.42 JB
Fluoranthene	ND 0.4 U		0.75 0.4	0.19 0.4 J	0.27 0.4 J	0.057 0.41 J	ND 0.4 U	ND 0.39 U	0.42 0.42
Pyrene	ND 0.4 U		0.62 0.4	0.14 0.4 J	0.2 0.4 J	0.056 0.41 J	ND 0.4 U	ND 0.39 U	0.36 0.42 J
Butylbenzylphthalate	ND 0.4 U		ND 0.4 U	ND 0.4 U	ND 0.4 U	ND 0.41 U	ND 0.4 U	ND 0.39 U	ND 0.42 U
3,3'-Dichlorobenzidine	ND 0.79 U		ND 0.79 U	ND 0.81 U	ND 0.8 U	ND 0.81 U	ND 0.8 U	ND 0.78 U	ND 0.84 U
Benzo (a) Anthracene	ND 0.4 U		0.38 0.4 J	0.086 0.4 J	0.13 0.4 J	ND 0.41 U	ND 0.4 U	ND 0.39 Ú	0.17 0.42 J
Chrysene	ND 0.4 U		0.55 0.4	0.086 0.4 J	0.12 0.4 J	ND 0.41 U	ND 0.4 U	ND 0.39 U	0.2 0.42 J
bis (2-Ethylhexyl) Phthalate	ND 0.4 U		0.53 0.4	0.21 0.4 J	0.28 0.4 J	0.09 0.41 J	0.061 0.4 J	ND 0.39 U	0.13 0.42 J
Di-n-Octyl Phthalate	ND 0.4 U		ND 0.4 U	ND 0.4 U	ND 0.4 U	ND 0.41 U	ND 0.4 U	ND 0.39 U	ND 0.42 U
Benzo (b) Fluoranthene	ND 0.4 U		0.59 0.4	0.11 0.4 J	0.24 0.4 J	0.058 0.41 J	ND 0.4 U	ND 0.39 U	0.22 0.42 J
Benzo (k.) Fluoranthene	ND 0.4 U		0.24 0.4 J	0.045 0.4 J	0.061 0.4 J	ND 0.41 U	ND 0.4 U	ND 0.39 U	0.1 0.42 J
Benzo (a) Pyrene	ND 0.4 U		0.46 0.4	0.084 0.4 J	0.13 0.4 J	ND 0.41 U	ND 0.4 U	ND 0.39 U	0.18 0.42 J
Indeno (1,2,3-cd) Pyrene	ND 0.4 U	1	0.4 0.4	0.046 0.4 J	0.074 0.4 J	ND 0.41 U	ND 0.4 U	ND 0.39 U	0.11 0.42 J
Dibenzo (a,h) Anthracene	ND 0.4 U		0.063 0.4 J	ND 0.4 U	ND 0.4 U	ND 0.41 U	ND 0.4 U	ND 0.39 U	ND 0.42 U
Benzo (g,h,i) Perylene	ND 0.4 U		0.33 0.4 J	ND 0.4 U	0.055 0.4 J	ND 0.41 U	ND 0.4 U	ND 0.39 U	0.1 0.42 J
Pyridine	ND 2 U		ND 2 U	ND 2.1 U					
3-Picoline	ND 0.4 U		2.7 0.4	ND 0.4 U	ND 0.4 U	8 2	ND 0.4 U	ND 0.39 U	0.27 0.42 J
1-Methyl-2-pyrrolidinone	ND 0.79 U		ND 0.79 U	ND 0.81 U	ND 0.8 U	ND 0.81 U	ND 0.8 U	ND 0.78 U	ND 0.84 U
N,N-Dimethylacetamide									
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
•	8240	8240	8240	8240	8240	8240	8240	8240	8240
Source Document(s)	2	2	2	2	2	2	2	2	2

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

ND Non-Detected

RL Reporting Limit

TABLE 6:
SOIL ANALYTICAL RESULTS
SAFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	SB-9	SB-9 DUP1	SB-9 DUP1 RERUN	SB-10	SB-10	TB1	RB-1	RB-2	RB-3
SAMPLING DATE	12/6/93	12/6/93	12/6/93	12/8/93	12/8/93	12/6/93	12/6/93	12/7/93	12/8/93
SAMPLING DEPTH/INTERVAL	17.5-18'	18-19'	18-19'	7.5-9'	17.5-18.5'	-	-	-	-
METALS - TCLP (mg/l)		18.5-19' RL flag		<i>8-9'</i> RL flag	18-18.5' RL flag		RL flag	RL flag	Total RL flag
Silver		ND 0.05 U		ND 0.05 U	ND 0.05 U		ND 0.03 U	ND 0.03 U	ND 0.03 U
Arsenic		ND 0.1 U		ND 0.1 U	ND 0.1 U		ND 0.002 U	ND 0.002 U	ND 0.002 U
Barium		0.7 0.5		0.54 0.5	0.89 0.5		ND 0.05 U	ND 0.05 U	ND 0.05 U
Cadmium		ND 0.05 U		ND 0.05 U	ND 0.05 U		ND 0.01 U	ND 0.01 U	ND 0.01 U
Chromium		ND 0.05 U		ND 0.05 U	ND 0.05 U		ND 0.02 U	ND 0.02 U	ND 0.02 U
Mercury		ND 0.01 U		ND 0.01 U	ND 0.01 U		ND 0.0002 U	ND 0.0002 U	ND 0.0002 U
Lead		ND 0.05 U		ND 0.05 U	ND 0.05 U		0.0051 0.002	0.0042 0.002	0.005 0.002
Selenium		ND 0.1 U		ND 0.1 U	ND 0.1 U		ND 0.002 U	ND 0.002 U	ND 0.002 U
VOLATILE ORGANICS (mg/kg)	17.5-18' RL flag	18-18.5' RL flag		7.5-8' RL flag	17.5-18' RL flag	mg/l RL flag	mg/l RL flag	mg/l RL flag	mg/IRL flag
Chloromethane	ND 0.012 U	ND 0.01 U		ND 0.012 U	ND 0.012 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Bromomethane	ND 0.012 U	ND 0.01 U		ND 0.012 U	ND 0.012 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Vinyl Chloride	ND 0.012 U	ND 0.01 U		0.018 0.012	0.047 0.012	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Chloroethane	ND 0.012 U	ND 0.01 U		0.2 0.12	0.13 0.012	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Methylene Chloride	ND 0.006 U	ND 0.005 U		0.051 0.006 B	3.2 0.059	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Acetone	0.058 0.012	0.11 0.01		0.052 0.012 B	1.1 0.12 B	ND 0.01 U	ND 0.01 U	ND 0.01 U	0.05 0.01
Carbon Disulfide	ND 0.006 U	ND 0.005 U		ND 0.006 U	0.005 0.006 J	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
1,1-Dichloroethene	ND 0.006 U	ND 0.005 U		ND 0.006 U	0.5 0.059	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
1,1-Dichloroethane	ND 0.006 U	ND 0.005 U		0.69 0.058	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
1,2-Dichloroethene (total)	ND 0.006 U	ND 0.005 U		0.038 0.006	1.1 0.059	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Chloroform	0.062 0.006	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
1,2-Dichloroethane	ND 0.006 U	ND 0.005 U		ND 0.006 U	0.17 0.006	ND 0.005 U	ND 0,005 U	ND 0.005 U	ND 0.005 U
2-Butanone	ND 0.012 U	ND 0.01 U		ND 0.012 U	0.097 0.012	ND 0.01 U	ND 0.01 U	ND 0.01 U	0.009 0.01 J
1,1,1-Trichloroethane	ND 0.006 U	ND 0.005 U		0.045 0.006	36 3	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Carbon Tetrachloride	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Vinyl Acetate	ND 0.012 U	ND 0.01 U		ND 0.012 U	ND 0.012 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Bromodichloromethane	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
1,2-Dichloropropane	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
cis-1,3-Dichloropropene	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Trichloroethene	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Dibromochloromethane	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
1,1,2-Trichloroethane	ND 0.006 U	ND 0.005 U		ND 0.006 U	0.07 0.006	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Benzene	ND 0.006 U	ND 0.005 U		0.33 0.058	0.24 0.059	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Trans-1,3-Dichloropropene	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Bromoform	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
4-Methyl-2-Pentanone	ND 0.012 U	ND 0.01 U		0.035 0.012	0.098 0.012	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
2-Hexanone	ND 0.012 U	ND 0.01 U		ND 0.012 U	ND 0.012 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Tetrachloroethene	ND 0.006 U	ND 0.005 U		0.017 0.006	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
1,1,2,2-Tetrachloroethane	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Toluene	ND 0.006 U	ND 0.005 U	•	1.8 0.058	0.31 0.059	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Chlorobenzene	ND 0.006 U	ND 0.005 U		ND 0.006 U	ND 0.006 U	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Ethylbenzene	ND 0.006 U	ND 0.005 U		0.45 0.058	1.2 0.059	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
tyrene	ND 0.006 U	ND 0.005 U		0.014 0.006	0.18 0.006	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Total Xylenes	ND 0.006 U	ND 0.005 U		0.11 0.006	0.1 0.006	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Tetrahydrofuran	ND 0.006 U	ND 0.005 U		2.2 0.058	1.4 0.059	ND 0.005 U	ND 0.005 U	ND 0.005 U	ND 0.005 U
Trichlorotrifluoroethane	ND 0.012 U	ND 0.01 U		0.028 0.012	0.5 0.12	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U
Highlorottmuoroethalle	1 140 0,012 0	10.0 0.01	ĺ	1 0.020 0.012	0.0 0.12	1 140 0.01 0	1 145 0.01	1 5.51	1 7.2 5.5

FABLE 6:
SOIL ANALYTICAL RESULTS
BAFETY-KLEEN SITE, CHICAGO, IL

JORING/ WELL I.D.	SB-9	SB-9 DUP1	SB-9 DUP1 RERUN	SB-10	SB-10	TB1	RB-1	RB-2	RB-3
SAMPLING DATE	12/6/93	12/6/93	12/6/93	12/8/93	12/8/93	12/6/93	12/6/93	12/7/93	12/8/93
SAMPLING DEPTH/INTERVAL	17.5-18'	18-19'	18-19'	7.5-9'	17.5-18.5'	-	-	-	
SEMI-VOLATILE ORGANICS (mg/kg)		18.5-19' RL flag	18.5-19' RL flag	8-9' RL flag	18-18.5' RL flag		mg/LRL: flag	mg/l RL flag	mg/i RL flag
Phenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		0.003 0.01 J	0.03 0.01	ND 0.011 U
bis (2-Chloroethyl) Ether		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2-Chlorophenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
1,3-Dichlorobenzene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
1,4-Dichlorobenzene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Benzyl Alcohol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
1,2-Dichlorobenzene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2-Methylphenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
bis (2-Chloroisopropyl) Ether		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
4-Methylphenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
N-Nitroso-Di-n-Propylamine		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Hexachloroethane		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Nitrobenzene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Isophorone		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2-Nitrophenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2,4-Dimethylphenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	0.001 0.011 J
Benzoic Acid		ND 2 U	ND 2 U	ND 2.2 U	ND 2 U		0.035 0.05 J	0.047 0.05 J	0.016 0.055 J
bis (2-Chloroethoxy) Methane		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2,4-Dichlorophenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
1,2,4-Trichlorobenzene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Naphthalene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
4-Chloroaniline		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Hexachlorobutadiene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
4-Chloro-3-Methylphenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2-Methylnaphthalene		ND 0.4 U	0.044 0.4 J	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Hexachlorocyclopentadiene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2,4,6-Trichlorophenol		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2,4,5-Trichlorophenol		ND 2 U	ND 2 U	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
2-Chloronaphthalene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2-Nitroaniline		ND 2 U	ND 2 U	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
Dimethyl Phthalate		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Acenaphthylene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2,6-Dinitrotoluene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
3-Nitroaniline		ND 2 U	ND 2 U	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
Acenaphthene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2,4-Dinitrophenol		ND 2 U	ND 2 U	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
4-Nitrophenol		ND 2 U	ND 2 U	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
Dibenzofuran		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
2,4-Dinitrotoluene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Diethylphthalate		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
4-Chlorophenyl-phenylether		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
uorene		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
4-Nitroaniline		ND 2. U	ND 2 U	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
4,6-Dinitro-2-Methylphenol		ND 2 U	ND 2 U	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
N-Nitrosodiphenylamine (1)		ND 0.4 U	ND 0.4 U	ND 0.44 U	ND 0.4 U	1	ND 0.01 U	ND 0.01 U	ND 0.011 U

TABLE 7: SOIL ANALYTICAL RESULTS

- QUALIFIED DATA (for 1993 data only)

SAFETY-KLEEN SITE, CHICAGO, IL B4 *B*4 *B*2 *B*2 *B3 B3 B3* BORING/ WELL I.D. B1 B1 10/23/91 10/23/91 10/23/91 10/22/91 10/22/91 10/22/91 10/22/91 10/23/91 10/23/91 SAMPLING DATE 10'-12' 6'-8' 8'-10' 2'-4' 4'-6' 2'-4' 8'-10' 6'-8' 8'-10' SAMPLING DEPTH/INTERVAL METALS - TCLP (mg/l) Silver Arsenic Barium Cadmium Chromium Mercury Lead Selenium RL RL RL flag RL RL flag flag RL flag RL flag flag RLflag flag **VOLATILE ORGANICS (mg/kg)** flag ND 0.013 U ND 0.013 U ND 0.015 U ND 0.066 U ND 0.013 U ND 0.062 U ND 0.013 U ND 0.012 U ND 0.012 U Chloromethane **Bromomethane** Vinyl Chloride Chloroethane Methylene Chloride 0.39 0.025 B ND 0.062 U 0.11 0.013 B 0.083 0.012 B 0.022 0.012 B 0.031 0.013 B 0.025 0.015 B 0.18 0.066 B 0.041 0.013 B Acetone Carbon Disulfide 1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethene (total) Chloroform 1,2-Dichloroethane 2-Butanone 0.037 0.008 0.12 0.033 0.004°0.006 J 0.31 0.31 11 0.32 0.002 0.006 J 0.01 0.006 0.008 0.006 0.011 0.006 1,1,1-Trichloroethane Carbon Tetrachloride Vinyl Acetate Bromodichloromethane 1,2-Dichloropropane cis-1,3-Dichloropropene 0.32 0.008 0.5 0.033 0.039 0.006 5.6 0.31 13 0.32 0.039 0.006 0.062 0.006 0.2 0.006 0.072 0.006 Trichloroethene Dibromochloromethane 1,1,2-Trichloroethane Benzene Trans-1,3-Dichloropropene **Bromoform** 4-Methyl-2-Pentanone 2-Hexanone ND 0.006 U 0.004 0.006 J 0.004 0.006 J ND 0.006 U 0.008 0.008 0.021 0.033 J 1.5 0.31 8.9 0.32 0.004 0.006 J Tetrachloroethene 1,1,2,2-Tetrachloroethane 0.029 0.006 0.006 0.006 0.027 0.006 0.017 0.008 0.087 0.033 0.11 0.006 1.2 0.31 6.8 0.32 0.41 0.061 Toluene Chlorobenzene Ethylbenzene Styrene Total Xylenes ND 0.008 U 0.018 0.033 J 0.37 0.031 0.086 0.006 0.2 0.006 0.026 0.006 ND 0.006 U 0.001 0.006 J 0.036 0.006 Tetrahydrofuran ND 0.013 U ND 0.062 U 0.17 0.013 ND 0.012 U ND 0.012 U 0.002 0.013 J ND 0.015 U 0.019 0.066 J 0.002 0.013 Trichlorotrifluoroethane

· QUALIFIED DATA (for 1993 data only) SAFETY-KLEEN SITE, CHICAGO, IL

JORING/ WELL I.D.	<i>B1</i>		B1		B2		B2		<i>B3</i>		B3		<i>B3</i>		<i>B4</i>		<i>B4</i>	
SAMPLING DATE	10/22/9	1	10/22/91		10/22/91		10/22/91		10/23/91		10/23/91		10/23/91		10/23/91		10/23/91	
SAMPLING DEPTH/INTERVAL	2'-4'		4'-6'		2'-4'		8'-10'		6′-8′		8'-10'		10'-12'		6'-8'		8'-10'	
SEMI-VOLATILE ORGANICS (mg/kg)	RL	flag	RL	flag	RL	flag		ag	RL	flag	RL	flag	RL	flag	RL	flag	RL	flag
Phenol																		
bis (2-Chloroethyl) Ether												İ						
2-Chlorophenol																		
1,3-Dichlorobenzene												!						
1,4-Dichlorobenzene														İ				
Benzyl Alcohol				:														
1,2-Dichlorobenzene]		
2-Methylphenol																		
bis (2-Chloroisopropyl) Ether																		
4-Methylphenol]								·		
N-Nitroso-Di-n-Propylamine	i																	
Hexachloroethane												i						
Nitrobenzene																		
Isophorone																		
2-Nitrophenol							:											
2,4-Dimethylphenol																		
Benzoic Acid																i		
bis (2-Chloroethoxy) Methane																		
2,4-Dichlorophenol																		
1,2,4-Trichlorobenzene																		
Naphthalene																		
4-Chloroaniline								1									i	
Hexachlorobutadiene															ļ			
4-Chloro-3-Methylphenol								ŀ										
2-Methylnaphthalene																		[
Hexachlorocyclopentadiene								1										
2,4,6-Trichlorophenol																-		
2,4,5-Trichlorophenol 2-Chloronaphthalene	1							l										
2-Chloronaphthalene 2-Nitroaniline																		
Dimethyl Phthalate																		
Acenaphthylene																		
2,6-Dinitrotoluene																		
3-Nitroaniline																		
Acenaphthene																		
2,4-Dinitrophenol								1										
4-Nitrophenol																		
Dibenzofuran																		
2,4-Dinitrotoluene																		
Diethylphthalate					ļ			ĺ										1
4-Chlorophenyl-phenylether								İ										
uorene																		
4-Nitroaniline															1			
4,6-Dinitro-2-Methylphenol								ļ										
N-Nitrosodiphenylamine (1)								ļ										
4-Bromophenyl-phenylether							-	1								_		
V_SOIL_M.XLS:6/28/94-10:19 AM	-				•			•								LTI,	`Limno-Teci	h, Inc.

BORING/ WELL I.D.	B1	B1	B2	B2	B3	ВЗ	ВЗ	B4	B4
SAMPLING DATE	10/22/91	10/22/91	10/22/91	10/22/91	10/23/91	10/23/91	10/23/91	10/23/91	10/23/91
SAMPLING DEPTH/INTERVAL	2'-4'	4'-6'	2'-4'	8'-10'	6′-8′	8'-10'	10'-12'	6'-8'	8'-10'
Hexachlorobenzene									
Pentachlorophenol									
Phenanthrene									
Anthracene									
Di-n-Butylphthalate						·			
Fluoranthene									
Pyrene									
Butylbenzylphthalate									
3,3'-Dichlorobenzidine									
Benzo (a) Anthracene									
Chrysene								,	
bis (2-Ethylhexyl) Phthalate									
Di-n-Octyl Phthalate							:		·
Benzo (b) Fluoranthene			•						
Benzo (k)Fluoranthene									
Benzo (a) Pyrene									
Indeno (1,2,3-cd) Pyrene									
Dibenzo (a,h) Anthracene		•							
Benzo (g,h,i) Perylene	:								
Pyridine	ND 0.4 U	0.24 0.43 J	ND 0.5 U	ND 0.44 U	ND 0.42 U	ND 0.41 U	ND 0.42 U	ND 0.4 U	ND 0.42 U
3-Picoline	ND 0.4 U	40 2.2	ND 0.5 U	ND 0.44 U	1.1 0.42	0.63 0.41	1.8 0.42	11 0.81	0.75 0.42
1-Methyl-2-pyrrolidinone	ND 0.4 U	0.61 0.43	0.16 0.5 J	0.059 0.44 J	ND 0.42 U	ND 0.41 U	ND 0.42 U	ND 0.4 U	ND 0.42 U
N,N-Dimethylacetamide	ND 0.4 U	0.31 0.43 J	ND 0.5 U	ND 0.44 U	ND 0.42 U	ND 0.41 U	0.14 0.42 J	ND 0.4 U	ND 0.42 U
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270
Source Document(s)	1	1	1	1	1	1	1	1	1

- 1 Supplemental Investigation Report Chicago Recycle Center Safety-Kleen Corp. Append D, Dec. 1991
- 2 Loose Lab Sheet provideded by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994
- U Compound was not detected at or above the reporting limit
- J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)
- B Compound was found in the blank and the sample
- UR Analyte was not detected but the results are unreliable due to serious deficiencies in the analysis
- **ND Non-Detected**
- **RL Reporting Limit**
- TB Trip Blank
- RB Rinse Blank
- J Red color indicates the corrected data qualifier

TABLE 7: SOIL ANALYTICAL RESULTS

BORING/ WELL I.D.	<i>B4</i>	B4	B4	B4	B4	B5	B5	B5	B5	<u>85</u>
SAMPLING DATE	11/4/91	11/4/91	11/4/91	11/4/91	11/4/91	10/24/91	10/24/91	10/24/91	10/24/91	10/24/91
SAMPLING DEPTH/INTERVAL	10'-12'	12'-14'	14'-16'	16'-18'	18'-20'	2'-4'	4'-6'	6'-8'	8'-10'	10'-12'
METALS - TCLP (mg/l)										
Silver										
Arsenic										
Barium										
Cadmium										
Chromium										
Mercury								:		
Lead										
Selenium										
VOLATILE ORGANICS (mg/kg)	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag
Chloromethane	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.012 U	ND 0.6 U	ND 0.24 U	ND 0.62 U	ND 0.25 U	ND 0.25 U
Bromomethane										
Vinyl Chloride										
Chloroethane										
Methylene Chloride										
Acetone	0.028 0.012 B	0.013 0.012 B	0.019 0.012 B	0.011 0.012 JB	0.016 0.012 B	2.2 0.6 B	22 6.1 B	13 6.2 B	39 6.3 B	ND 0.25 U
Carbon Disulfide						ļ '				
1,1-Dichloroethene										
1,1-Dichloroethane										
1,2-Dichloroethene (total)										
Chloroform										•
1,2-Dichloroethane										
2-Butanone										
1,1,1-Trichloroethane	ND 0.006 U	ND 0.006 U	0.003 0.006 J	ND 0.006 U	ND 0.006 U	0.7 0.3	140 6.1	120 3.1	220 6.3	420 12
Carbon Tetrachloride	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									
Vinyl Acetate										
Bromodichloromethane										
1,2-Dichloropropane										
cis-1,3-Dichloropropene										
Trichloroethene	ND 0.006 U	ND 0.006 U	0.009 0.006	ND 0.006 U	0.005 0.006 J	9.9 0.3	510 12	380 12	740 32	530 31
Dibromochloromethane	145 0.000	115 01000								
1,1,2-Trichloroethane										
Benzene		•								•
Trans-1,3-Dichloropropene										
Bromoform										
4-Methyl-2-Pentanone								İ		
2-Hexanone										
Tetrachloroethene	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	1 0.3	4.5 0.12	8.9 0.31	2.8 0.13	ND 0.12 U
	140 0.000 0	145 0.000	115 0,000							
1,1,2,2-Tetrachloroethane Toluene	0.008 0.006	ND 0.006 U	0.012 0.006	0.005 0.006 J	0.009 0.006	100 3	130 6.1	520 12	82 6.3	320 12
	0.000 0.000	145 0.000	0.012 0.000	0,000						
Chlorobenzene										
Cthylbenzene										
tyrene										
Total Xylenes	0.01 0.006	0.002 0.006 J	ND 0.006 U	0.004 0.006 J	0.004 0.006 J	0.063 0.3 J	ND 0.12 U	ND 0.31 U	2.5 0.13	0.74 0.12
Tetrahydrofuran	ND 0.012 U	ND 0.012 U	ND 0.000 U	ND 0.012 U	ND 0.012 U	ND 0.6 U	0.62 0.24	6.3 0.62	0.28 0.25	2.3 0.25
Trichlorotrifluoroethane	140 0.012 0	140 0.012 0	100.012	145 0.012 0	112 0.012 0	1		•	•	•

- QUALIFIED DATA (for 1993 data only)

BORING/ WELL I.D.	B4	<i>B4</i>	B4	B4	<i>B4</i>	<i>B5</i>	<i>B</i> 5	B5	<i>B5</i>	<i>B5</i>
SAMPLING DATE	11/4/91	11/4/91	11/4/91	11/4/91	11/4/91	10/24/91	10/24/91	10/24/91	10/24/91	10/24/91
SAMPLING DEPTH/INTERVAL	10'-12'	12'-14'	14'-16'	16'-18'	18'-20'	2'-4'	4'-6'	6'-8'	8'-10'	10'-12'
SEMI-VOLATILE ORGANICS (mg/kg)	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag
Phenol										
bis (2-Chloroethyl) Ether						1				
2-Chlorophenol										
1,3-Dichlorobenzene				.						
1,4-Dichlorobenzene										
Benzyl Alcohol										ļ
1,2-Dichlorobenzene										
2-Methylphenol						1				
bis (2-Chloroisopropyl) Ether					·					
4-Methylphenol										
N-Nitroso-Di-n-Propylamine			•							
Hexachloroethane										
Nitrobenzene	j									
Isophorone										
2-Nitrophenol										
2,4-Dimethylphenol										
Benzoic Acid										
bis (2-Chloroethoxy) Methane	1									
2,4-Dichlorophenol										
1,2,4-Trichlorobenzene					·					
Naphthalene										
4-Chloroaniline								ļ		
Hexachlorobutadiene										
4-Chloro-3-Methylphenol										
2-Methylnaphthalene										
Hexachlorocyclopentadiene										
2,4,6-Trichlorophenol										!
2,4,5-Trichlorophenol				;						
2-Chloronaphthalene										
2-Nitroaniline	1									
Dimethyl Phthalate										
Acenaphthylene						ļ				
2,6-Dinitrotoluene										
3-Nitroaniline				•						
Acenaphthene										
2,4-Dinitrophenol										
4-Nitrophenol	1									
Dibenzofuran										
2,4-Dinitrotoluene						1				
Diethylphthalate										
4-Chlorophenyl-phenylether]									
Fluorene										
4-Nitroaniline										
4,6-Dinitro-2-Methylphenol										
N-Nitrosodiphenylamine (1)										
4-Bromophenyl-phenylether									ITI Limno-	

TABLE 7:

BORING/ WELL I.D.	B4	B4	B4	B4	B4	<i>B</i> 5	B5	B5	<i>B5</i>	<i>B5</i>
SAMPLING DATE	11/4/91	11/4/91	11/4/91	11/4/91	11/4/91	10/24/91	10/24/91	10/24/91	10/24/91	10/24/91
SAMPLING DEPTH/INTERVAL	10'-12'	12'-14'	14'-16'	16'-18'	18'-20'	2'-4'	4'-6'	6'-8'	8'-10'	10'-12'
4-Bromophenyl-phenylether										
Hexachlorobenzene										
Pentachlorophenol										
Phenanthrene										
Anthracene										
Di-n-Butylphthalate										
Fluoranthene										
Pyrene										
Butylbenzylphthalate										
3,3'-Dichlorobenzidine										
Benzo (a) Anthracene				 						
Chrysene										
bis (2-Ethylhexyl) Phthalate					·					
Di-n-Octyl Phthalate										
Benzo (b) Fluoranthene										
Benzo (k.) Fluoranthene										
Benzo (a) Pyrene									i	
Indeno (1,2,3-cd) Pyrene										
Dibenzo (a,h) Anthracene										
Benzo (g,h,i) Perylene									222.42	400.00
Pyridine	ND 0.4 U	ND 0.39 U		ND 0.4 U		31 8	83 20	330 21	280 42	120 8.3
3-Picoline	0.47 0.4	ND 0.39 U		0.15 0.4 J		330 20	410 20	1400 83	1300 420	660 42
1-Methyl-2-pyrrolidinone	ND 0.4 U	ND 0.39 U		ND 0.4 U		13 8	31 4.1	52 8.3	64 8.4	310 21
N,N-Dimethylacetamide	ND 0.4 U	ND 0.39 U		ND 0.4 U		1.8 8 J	320 20	3400 410	5200 420	3000 420
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270	8240 &8270
Source Document(s)	1	1	1	1	1	1	1]	· 1	1

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet provideded by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

UR Analyte was not detected but the results are unreliable due to serious deficiencies in the analysis

ND Non-Detected

RL Reporting Limit

TB Trip Blank

RB Rinse Blank

J Red color indicates the corrected data qualifier

TABLE 7: SOIL ANALYTICAL RESULTS

BORING/ WELL I.D.	B6		B6		B8	B8	MW-1	MW-1	MW-2	MW-2	MW-3	MW-3
SAMPLING DATE	10/25/91		10/25/91		10/23/91	10/23/91	10/24/91	10/24/91	10/24/91	10/24/91	10/25/91	10/25/91
SAMPLING DEPTH/INTERVAL	8'-10'		4'-6'		2'-4'	8'-10'	4'-6'	6'-8'	6'-8'	10'-12'	4'-6'	10'-12'
METALS - TCLP (mg/l)												
Silver										Ì		
Arsenic												
Barium											, 	
Cadmium												
Chromium												
Mercury												
Lead												
Selenium												D1
VOLATILE ORGANICS (mg/kg)	RL	flag	RL	flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag
Chloromethane	ND 0.064	U	ND 0.25	U	ND 0.25 U	ND 0.13 U	ND 0.12 U	ND 0.25 U	ND 0.25 U	ND 0.25 U	ND 0.13 U	ND 0.012 U
Bromomethane	•											
Vinyl Chloride							İ					·
Chloroethane			•									
Methylene Chloride				ŀ								0.04.0.040
Acetone	0.048 0.064	J	2.2 0.25	В	ND 0.25 U	0.43 0.13 B	0.057 0.12 JB	0.37 0.25 B	3.4 0.25 B	0.85 0.25 B	0.31 0.13 B	0.31 0.012
Carbon Disulfide									<u> </u>			
1,1-Dichloroethene												
1,1-Dichloroethane												
1,2-Dichloroethene (total)	1											
Chloroform												
1,2-Dichloroethane		,										
2-Butanone											0.007.0000.1	0.044.0.000
1,1,1-Trichloroethane	ND 0.032	U	ND 0.12	U	ND 0.13 U	ND 0.063 U	0.038 0.062 J	ND 0.12 U	0.46 0.12	0.52 0.12	0.027 0.066 J	0.011 0.006
Carbon Tetrachloride												
Vinyl Acetate												
Bromodichloromethane												
1,2-Dichloropropane	Ì											
cis-1,3-Dichloropropene										- 0 0 0 d	0.04.0.000	0.055.0.000
Trichloroethene	0.047 0.032		0.11 0.12	J	ND 0.13 U	13 0.32	0.6 0.062	0.8 0.12	8.4 0.31	5.2 0.31	0.34 0.066	0.055 0.006
Dibromochloromethane												
1,1,2-Trichloroethane												
Benzene				:			ļ				· ·	
Trans-1,3-Dichloropropene	`					·						
Bromoform												
4-Methyl-2-Pentanone												
2-Hexanone								110 0 10 11	0.04.0.40	0.4.0.4.0	ND 0 066 H	ND 0.006 U
Tetrachloroethene	ND 0.032	U	ND 0.12	U	ND 0.13 U	4.7 0.32	ND 0.062 U	ND 0.12 U	0.61 0.12	0.4 0.12	ND 0.066 U	ND 0.000 0
1,1,2,2-Tetrachloroethane						0.05.0.00	0.54.0.000	0.0.40	0.5.0.10	22012	0.46.0.066	0.031 0.006
Toluene	0.036 0.032		5.7 0.62		6.9 1.3	0.85 0.063	0.54 0.062	2.3 0.12	3.5 0.12	2.3 0.12	0.46 0.066	0.031 0.000
Chlorobenzene												
Ethylbenzene												
عtyrene على												
Total Xylenes								0.01.0.15	1 1 2 1 2	0.00.0.40	1 5 0 000	0.03.0.006
Tetrahydrofuran	0.97 0.032		3.4 0.12		16 1.3	2.4 0.063	0.36 0.062	0.31 0.12	1.4 0.12	0.96 0.12	1.5 0.066	0.03 0.006
Trichlorotrifluoroethane	ND 0.064	U	ND 0.25	U	ND 0.25 U	0.43 0.13	ND 0.12 U	ND 0.25 U	ND 0.25 U	ND 0.25 U	ND 0.13 U	ND 0.012 U

BORING/ WELL I.D.	<i>B6</i>		B6		<i>B8</i>		B8	MW-1	MW-1	MW-2	MW-2	MW-3	MW-3
SAMPLING DATE	10/25/91		10/25/91		10/23/91	,	10/23/91	10/24/91	10/24/91	10/24/91	10/24/91	10/25/91	10/25/91
SAMPLING DEPTH/INTERVAL	8'-10'		4'-6'		2'-4'		8'-10'	4'-6'	6'-8'	6'-8'	10'-12'	4'-6'	10'-12'
SEMI-VOLATILE ORGANICS (mg/kg)	RL	flag	RL	flag	RL	flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag	RL flag
Phenol				1							_		
bis (2-Chloroethyl) Ether													
2-Chlorophenol				ĺ									
1,3-Dichlorobenzene							j						1
1,4-Dichlorobenzene				1									
Benzyl Alcohol													
1,2-Dichlorobenzene													
2-Methylphenol				Į.					•				·
bis (2-Chloroisopropyl) Ether													
4-Methylphenol		1											
N-Nitroso-Di-n-Propylamine												j	
Hexachloroethane				i		1							ļ
Nitrobenzene													
Isophorone													
2-Nitrophenol													
2,4-Dimethylphenol]									
Benzoic Acid						ĺ							İ
bis (2-Chloroethoxy) Methane													
2,4-Dichlorophenol													
1,2,4-Trichlorobenzene				ļ									
Naphthalene													
4-Chloroaniline													
Hexachlorobutadiene				l									
4-Chloro-3-Methylphenol													
2-Methylnaphthalene													
Hexachlorocyclopentadiene													
2,4,6-Trichlorophenol													
2,4,5-Trichlorophenol				Ì									
2-Chloronaphthalene													:
2-Nitroaniline							,						
Dimethyl Phthalate							•						
Acenaphthylene		İ											
2,6-Dinitrotoluene													
3-Nitroaniline													
Acenaphthene													
2,4-Dinitrophenol													
4-Nitrophenol													
Dibenzofuran						1							
2,4-Dinitrotoluene													
Diethylphthalate													
4-Chlorophenyl-phenylether				}									
luorene											÷.		
4-Nitroaniline													
4,6-Dinitro-2-Methylphenol						1				1			
N-Nitrosodiphenylamine (1)			4										
4-Bromophenyl-phenylether													

TABLE 7: SOIL ANALYTICAL RESULTS

aORING/ WELL I.D.	SB-4		SB-4 RERUN	SB-4	SB-4 DUP4		SB-5		SB-5 DUP3		SB-5		SB-6		SB-6	
SAMPLING DATE	12/7/93		12/7/93	12/7/93	12/7/93		12/7/93		12/7/93		12/7/93		12/6/93		12/6/93	
SAMPLING DEPTH/INTERVAL	5-6'		5-6'	16.5-17'	17-18'		8.5-9.5		9.5-10'		18.5-20'		6-7'		17.5-18.5	
EMI-VOLATILE ORGANICS (mg/kg)	5.5-6' RL	flag	5.5-6'		<i>17.5-18</i> ' RL	flag	<i>9-9.5'</i> RL	flag	<i>9.5-10'</i> RL	flag	19-20' RL	flag	6.5-7' RL	flag	<i>18-18.5'</i> RL	fla
Phenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	U
bis (2-Chloroethyl) Ether	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U ·	ND 0.42	U	ND 0.4	U
2-Chlorophenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	U
1,3-Dichlorobenzene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	U
1,4-Dichlorobenzene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	U
Benzyl Alcohol	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	ι
1,2-Dichlorobenzene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	ι
2-Methylphenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	Ū	ND 0.42	U	ND 0.4	ι
bis (2-Chloroisopropyl) Ether	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	l
4-Methylphenol	0.05 0.41	J	0.82 0.41 J		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	ι
N-Nitroso-Di-n-Propylamine	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	ί
Hexachloroethane	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	Ų
Nitrobenzene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	U
Isophorone	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U ·	ND 0.42	U	ND 0.4	Ų
2-Nitrophenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	U	ND 0.41	U	ND 0.41	υ	ND 0.4	U	ND 0.42	U	ND 0.4	ι
2,4-Dimethylphenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	ι
Benzoic Acid	ND 2.1	UR	0.062 2.1 J		ND 1.9	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U	ND 2	ι
bis (2-Chloroethoxy) Methane	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Ū	ND 0.41	U ·	ND 0.41	υ	ND 0.4	Ū	ND 0.42	U	ND 0.4	,
2,4-Dichlorophenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	Ū	ND 0.41	Ü	ND 0.41	U	ND 0.4	· U	ND 0.42	Ū	ND 0.4	ı
1,2,4-Trichlorobenzene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Ū	ND 0.41	Ū	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	
Naphthalene	ND 0.41	UR	0.058 0.41 J		ND 0.38	Ū	ND 0.41	Ū	ND 0.41	Ü	ND 0.4	Ū	ND 0.42	U	ND 0.4	
4-Chloroaniline	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Ū	ND 0.41	Ü	ND 0.41	Ū	ND 0.4	U	ND 0.42	U	ND 0.4	
Hexachlorobutadiene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Ü	ND 0.41	Ŭ	ND 0.41	Ū	ND 0.4	Ū	ND 0.42	Ü	ND 0.4	
4-Chloro-3-Methylphenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	Ŭ	ND 0.41	Ū	ND 0.41	Ū	ND 0.4	Ü	ND 0.42	Ū	ND 0.4	
2-Methylnaphthalene	ND 0.41	UR	0.046 0.41 J		0.059 0.38	.I	ND 0.41	Ü	ND 0.41	Ū	ND 0.4	U	ND 0.42	U	0.046 0.4	
Hexachlorocyclopentadiene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Ŭ	ND 0.41	Ü	ND 0.41	Ü	ND 0.4	Ü	ND 0.42	Ū	ND 0.4	
2,4,6-Trichlorophenol	ND 0.41	UR	ND 0.41 UJR		ND 0.38	Ü	ND 0.41	Ü	ND 0.41	Ū	ND 0.4	Ü	ND 0.42	Ū	ND 0.4	ļ
2,4,5-Trichlorophenol	ND 2.1	UR	ND 2.1 UJR		ND 1.9	Ŭ	ND 2	Ü	ND 2	Ŭ	ND 2	Ü	ND 2.1	Ū	ND 2	1
2-Chloronaphthalene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Ш	ND 0.41	Ŭ	ND 0.41	Ü	ND 0.4	Ű	ND 0.42	Ŭ	ND 0.4	
2-Nitroaniline	ND 2.1	UR	ND 2.1 UJ		ND 1.9	П	ND 2	Ü	ND 2	Ü	ND 2	ŭ	ND 2.1	Ü	ND 2	1
Dimethyl Phthalate	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Ü	ND 0.41	Ü	ND 0.41		ND 0.4	Ŭ	ND 0.42	υ	ND 0.4	
Acenaphthylene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	Н	ND 0.41	Ü	ND 0.41	U	ND 0.4	Ü	ND 0.42	Ü	ND 0.4	
2,6-Dinitrotoluene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U .	ND 0.4	Ü	ND 0.42	Ü	ND 0.4	
•	ND 0.41	UR	ND 0.41 03		ND 1.9	U	ND 2	U	ND 2	Ü	ND 2	Ü	ND 2.1	U	ND 2	
3-Nitroaniline	ND 0.41	UR	ND 0.41 UJ		ND 1.9	U	ND 0.41	U	ND 0.41	U	ND 0.4	Ü	ND 0.42	U	ND 0.4	
Acenaphthene	ND 0.41	UR	ND 0.41 03		ND 0.38	U	ND 2	U	ND 0.41	Ü	ND 0.4 ND 2	U	ND 0.42	U	ND 2	
2,4-Dinitrophenol		UR	ND 2.1 UJR		ND 1.9	U	ND 2	U	ND 2	IJ	ND 2	U -	ND 2.1	U	ND 2	
4-Nitrophenol	ND 2.1				ND 1.9	U	ND 0.41	U	ND 2 ND 0.41	~	ND 0.4	U	ND 0.42	U	ND 0.4	
Dibenzofuran	ND 0.41	UR			i	U	ND 0.41	U	ND 0.41		ND 0.4	U	ND 0.42	ย	ND 0.4	
2,4-Dinitrotoluene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	•	1	U	i		ND 0.4	U	ND 0.42	11	ND 0.4	
Diethylphthalate	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	-	ND 0.41			U	1	U	ND 0.4	
4-Chlorophenyl-phenylether	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4		ND 0.42	_		
Fluorene	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	
-Nitroaniline	ND 2.1	UR	ND 2.1 UJ		ND 1.9	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U	ND 2	
4,6-Dinitro-2-Methylphenol	ND 2.1	UR	ND 2.1 UJR		ND 1.9	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U	ND 2	
N-Nitrosodiphenylamine (1)	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	,
4-Bromophenyl-phenylether	ND 0.41	UR	ND 0.41 UJ		ND 0.38	U	ND 0.41	U	ND 0.41	U	ND 0.4	U	ND 0.42	U	ND 0.4	ţ

TABLE 7: SOIL ANALYTICAL RESULTS

BORING/ WELL I.D.	SB-4	SB-4 RERUN	SB-4	SB-4 DUP4	SB-5	SB-5 DUP3	SB-5	SB-6	SB-6
SAMPLING DATE	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/7/93	12/6/93	12/6/93
SAMPLING DEPTH/INTERVAL	5-6'	5-6'	16.5-17'	17-18'	8.5-9.5'	9.5-10'	18.5-20'	6-7'	17.5-18.5'
4-Bromophenyl-phenylether	ND 0.41 UR	ND 0.41 UJ		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Hexachlorobenzene	ND 0.41 UR	ND 0.41 UJ		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Pentachlorophenol	ND 2.1 UR	ND 2.1 UJR		ND 1.9 U	ND 2 U	ND 2 U	ND 2 U	ND 2.1 U	ND 2 U
Phenanthrene	ND 0.41 UR	0.05 0.41 J		0.07 0.38 J	0.063 0.41 J	0.057 0.41 J	ND 0.4 U	ND 0.42 U	ND 0.4 U
Anthracene	ND 0.41 UR	ND 0.41 UJ		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Di-n-Butylphthalate	ND 0.41 UR	0.33 0.41 UJ		ND 0.38 BU	ND 0.41 BU	ND 0.41 BU	ND 0.4 BU	ND 0.42 BU	ND 0.4 BU
Fluoranthene	ND 0.41 UR	0.21 0.41 J		ND 0.38 U	0.063 0.41 J	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Pyrene	ND 0.41 UR	0.22 0.41 J		ND 0.38 U	0.063 0.41 J	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Butylbenzylphthalate	ND 0.41 UR	ND 0.41 UJ		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
3,3'-Dichlorobenzidine	ND 0.83 UR	ND 0.83 UJ	•	ND 0.77 U	ND 0.81 U	ND 0.81 U	ND 0.81 U	ND 0.84 U	ND 0.79 U
Benzo (a) Anthracene	ND 0.41 UR	0.087 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Chrysene	ND 0.41 UR	0.095 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
bis (2-Ethylhexyl) Phthalate	ND 0.41 UR	0.087 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Di-n-Octyl Phthalate	ND 0.41 UR	ND 0.41 UJ		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Benzo (b) Fluoranthene	ND 0.41 UR	0.12 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Benzo (k.) Fluoranthene	ND 0.41 UR	0.087 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Benzo (a) Pyrene	ND 0.41 UR	0.046 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Indeno (1,2,3-cd) Pyrene	ND 0.41 UR	ND 0.41 UJ		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Dibenzo (a,h) Anthracene	ND 0.41 UR	ND 0.41 UJ		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Benzo (g,h,i) Perylene	ND 0.41 UR	0.058 0.41 J		ND 0.38 U	ND 0.41 U	ND 0.41 U	ND 0.4 U	ND 0.42 U	ND 0.4 U
Pyridine	ND 2.1 UR	ND 2.1 UJ		ND 1.9 U	ND 2 U	ND 2 U	ND 2 U	ND 2.1 U	ND 2 U
3-Picoline	8.5 0.41 J	9.7 0.41 J		0.095 0.38 J	ND 0.41 U	ND 0.41 U	ND 0.4 U	0.37 0.42 J	ND 0.4 U
1-Methyl-2-pyrrolidinone	ND 0.83 UR	ND 0.83 UJ		ND 0.77 U	ND 0.81 U	ND 0.81 U	ND 0.81 U	ND 0.84 U	ND 0.79 U
N,N-Dimethylacetamide	·								
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240	8240	8240	8240	8240	8240	8240	8240	8240
Source Document(s)	2	2	2	2	2	2	2	2	2

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet provideded by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

UR Analyte was not detected but the results are unreliable due to serious deficiencies in the analysis

ND Non-Detected

RL Reporting Limit

TB Trip Blank

RB Rinse Blank

J Red color indicates the corrected data qualifier

TABLE 7:
SOIL ANALYTICAL RESULTS
- QUALIFIED DATA (for 1993 data only)
SAFETY-KLEEN SITE, CHICAGO, IL

ತಿORING/ WELL I.D.	SB-6 RERUN	<i>\$B</i> -7	SB-7	SB-7 DUP5	SB-8	SB-8	SB-8	SB-9	SB-9
SAMPLING DATE	12/6/93	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93	12/8/93	12/6/93	12/6/93
SAMPLING DEPTH/INTERVAL	17.5-18	8-8.5'	11.5-12'	12.5-13'	7.5-8.5'	17.5-18.5'	19.5-20'	8-9'	17.5-18'
METALS - TCLP (mg/l)	·	·	12-12.5' RL flag	12.5-13' RL flag	8-8.5' RL flag	18-18.5' RL flag	20-20.5' RL flag	8.5-9' RL flag	
Silver		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	
Arsenic		ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	
Barium		ND 0.5 U	0.69 0.5	0.87 0.5	ND 0.5 U	ND 0.5 U	ND 0.5 U	1.8 0.5	
Cadmium		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	•
Chromium		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	
Mercury		ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	ND 0.01 U	
Lead		ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	ND 0.05 U	
Selenium	i	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	ND 0.1 U	
VOLATILE ORGANICS (mg/kg)	17.5-18' RL flag	8-8.5' RL flag	11.5-12' RL flag		7.5-8' RL flag	17.5-18' RL flag	19.5-20' RL flag	8-8.5' RL flag	7.5-18' RL fla
Chloromethane	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U	ND 0.012 U
Bromomethane	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U	ND 0.012 U
Vinyl Chloride	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U	ND 0.012 U
Chloroethane	ND 0.012 U	ND 0.012 U	ND 0.012 U		0.03 0.012	0.068 0.011	ND 0.012 U	ND 0.012 U	ND 0.012 U
Methylene Chloride	ND 0.006 U	0.009 0.006 BU	0.036 0.006 BU		0.007 0.006 BU	0.14 0.006 BJ	0.14 0.006 BJ	ND 0.006 U	ND 0.006 U
Acetone	0.12 0.012	0.66 0.12 BJ	1.8 0.58 J		0.029 0.012 BU	ND 0.011 U	ND 0.012 U	0.04 0.012	0.058 0.012
Carbon Disulfide	ND 0.006 U	0.004 0.006 J	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,1-Dichloroethene	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,1-Dichloroethane	ND 0.006 U	0.048 0.006	ND 0.006 U		0.006 0.006	6.1 0.11	0.7 0.058	0.017 0.006	ND 0.006 U
1,2-Dichloroethene (total)	ND 0.006 U	0.043 0.006	ND 0.006 U		ND 0.006 U	0.026 0.006	0.007 0.006	0.005 0.006 J	ND 0.006 U
Chloroform	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	0.062 0.006
1,2-Dichloroethane	ND 0.006 U	ND 0.006 U	0.024 0.006		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
2-Butanone	ND 0.012 U	0.037 0.012	0.2 0.012		ND 0.012 U	0.014 0.011	ND 0.012 U	ND 0.012 U	ND 0.012 U
1,1,1-Trichloroethane	ND 0.006 U	0.006 0.006	ND 0.006 U		ND 0.006 U	1.2 0.11	0.2 0.006	ND 0.006 U	ND 0.006 U
Carbon Tetrachloride	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Vinyl Acetate	ND 0.012 U	ND 0.012 U	ND 0.012 U	-	ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U	ND 0.012 U
Bromodichloromethane	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,2-Dichloropropane	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
cis-1,3-Dichloropropene	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Trichloroethene	ND 0.006 U	0.004 0.006 J	ND 0.006 U		ND 0.006 U	17 5.6 J	2.4 0.058	ND 0.006 U	ND 0.006 U
Dibromochloromethane	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
	ND 0.006 U	ND 0.006 U	E .			0.007 0.006	ND 0.006 U	ND 0.006 U	ND 0.006 U
1,1,2-Trichloroethane	ND 0.006 U	0.11 0.006	ND 0.006 U 0.38 0.29 J		ND 0.006 U 0.024 0.006	0.007 0.006	0.004 0.006 J	0.006 0.006	ND 0.006 U
Benzene	ND 0.006 U				1			ND 0.006 U	ND 0.006 U
Trans-1,3-Dichloropropene	1	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ł do na do na do na do na do na do na do na do na do na do na do na do na do na do na do na do na do na do na	
Bromoform	ND 0.006 U	ND 0.006 U	ND 0.006 U	•	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
4-Methyl-2-Pentanone	ND 0.012 U	0.26 0.12	0.023 0.012		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U	ND 0.012 U
2-Hexanone	ND 0.012 U	ND 0.012 U	ND 0.012 U		ND 0.012 U	ND 0.011 U	ND 0.012 U	ND 0.012 U	ND 0.012 U
Tetrachloroethene	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	16 5.6 J	1.8 0.058	ND 0.006 U	ND 0.006 U
1,1,2,2-Tetrachloroethane	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Toluene	ND 0.006 U	0.17 0.006	0.74 0.29 J		1.7 0.06	25 5.6 J	2.1 0.058	0.003 0.006 J	ND 0.006 U
Chlorobenzene	ND 0.006 U	ND 0.006 U	ND 0.006 U		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Ethylbenzene	ND 0.006 U	2 0.058	1.4 0.29 J		ND 0.006 U	0.025 0.006	ND 0.006 U	ND 0.006 U	ND 0.006 U
tyrene	ND 0.006 U	0.006 0.006	3.5 0.29 J		ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U	ND 0.006 U
Total Xylenes	ND 0.006 U	0.28 0.058	0.071 0.006		ND 0.006 U	0.083 0.006	0.014 0.006	ND 0.006 U	ND 0.006 U
Tetrahydrofuran	ND 0.006 U	1.7 0.29 J	0.21 0.006		6.9 0.3 J	0.26 0.006	0.091 0.006	ND 0.006 U	ND 0.006 U
Trichlorotrifluoroethane	ND 0.012 U	0.26 0.12	24 2.3 J		ND 0.012 U	260 11 J	24 12 J	ND 0.012 U	ND 0.012 U

TABLE 7:
SOIL ANALYTICAL RESULTS
- QUALIFIED DATA (for 1993 data only)
SAFETY-KLEEN SITE, CHICAGO, IL

BORING/ WELL I.D.	SB-6 RERUN	SB-7		<i>SB</i> -7		SB-7 DUP5		SB-8		SB-8		\$B-8		SB-9		SB-9
SAMPLING DATE	12/6/93	12/8/93		12/8/93		12/8/93	Ī	12/8/93		12/8/93		12/8/93		12/6/93		12/6/93
SAMPLING DEPTH/INTERVAL	17.5-18	8-8.5'		11.5-12'		12.5-13'		7.5-8.5'		17.5-18.5		19.5-20'		8-9'		17.5-18'
EMI-VOLATILE ORGANICS (mg/kg)		8.5-9' RL	flag	12-12.5' RL	flag		flag	<i>8-8.5'</i> RL	flag	1	flag	20-20.5' RL	flag	8.5-9' RL	flag	
Phenol		ND 0.4	U	4.1 0.4		1.6 0.4		2.6 0.41		ND 0.4	U	ND 0.39	U	ND 0.42	U	
bis (2-Chloroethyl) Ether		ND 0.4	U	ND 0.4	U	****	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2-Chlorophenol		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
1,3-Dichlorobenzene		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
1,4-Dichlorobenzene		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
Benzyl Alcohol	•	ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	Ų	ND 0.4	U	ND 0.39	U	ND 0.42	U	
1,2-Dichlorobenzene		ND 0.4	U	ND 0.4	U		U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2-Methylphenol		ND 0.4	U	0.06 0.4	J	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
bis (2-Chloroisopropyl) Ether		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	•
4-Methylphenol		0.18 0.4	J	ND 0.4	U	ND 0.4	U	0.46 0.41		ND 0.4	U	ND 0.39	U	ND 0.42	U	
N-Nitroso-Di-n-Propylamine		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
Hexachloroethane		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
Nitrobenzene		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
Isophorone		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2-Nitrophenol		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2,4-Dimethylphenol		0.6 0.4		ND 0.4	U	ND 0.4	U	0.86 0.41		ND 0.4	U	ND 0.39	U	ND 0.42	U	
Benzoic Acid		ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U	
bis (2-Chloroethoxy) Methane		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2,4-Dichlorophenol		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
1,2,4-Trichlorobenzene		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42		
Naphthalene		0.14 0.4	J	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
4-Chloroaniline		ND 0.4	U	ND 0.4	υ	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
Hexachlorobutadiene		ND 0.4	Ū	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	•
4-Chloro-3-Methylphenol		ND 0.4	Ū	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2-Methylnaphthalene		0.11 0.4	J	0.045 0.4	J	0.047 0.4	J	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
Hexachlorocyclopentadiene		ND 0.4	Ū	ND 0.4	Ū	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2,4,6-Trichlorophenol		ND 0.4	Ū	ND 0.4	Ū	ND 0.4	U	ND 0.41	Ų	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2,4,5-Trichlorophenol		ND 2	Ü	ND 2	Ü	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U	
2-Chloronaphthalene		ND 0.4	Ü	ND 0.4	Ü	ND 0.4	Ü	ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 0.42	U	
2-Nitroaniline		ND 2	Ü	ND 2	Ū	ND 2	U	ND 2	U	ND 2	U	ND 2	U	ND 2.1	U	
Dimethyl Phthalate		ND 0.4	ŭ	ND 0.4	Ü	ND 0.4	Ŭ	ND 0.41	Ū	ND 0.4	Ū	ND 0.39	U	ND 0.42	U	
Acenaphthylene		ND 0.4	ŭ	ND 0.4	Ū	ND 0.4	Ü	ND 0.41	Ū	ND 0.4	Ū	ND-0.39		ND 0.42	U	
2,6-Dinitrotoluene		ND 0.4	Ü	ND 0.4	Ü	ND 0.4	Ü	ND 0.41	Ŭ	ND 0.4	Ū	ND 0.39		ND 0.42	U	
3-Nitroaniline		ND 2	Ü	ND 2	IJ	ND 2	Ŭ	ND 2	Ū	ND 2	Ū	ND 2	U	ND 2.1	U	
Acenaphthene		0.12 0.4	.1	ND 0.4	IJ	ND 0.4	Ü	ND 0.41	Ü	ND 0.4	Ū	ND 0.39	U	ND 0.42	U	
2,4-Dinitrophenol		ND 2	U	ND 0.4	Ü.	ND 2	Ü	ND 2	Ű	ND 2	Ŭ	ND 2	Ū	ND 2.1	U	
· · ·		ND 2	U	ND 2	11	ND 2	11	ND 2	Ŭ	ND 2	Ŭ	ND 2	Ū	ND 2.1	U	
4-Nitrophenol		0.067 0.4	J	ND 0.4	11	ND 0.4	Ü	ND 0.41	Ü	ND 0.4	Ü	ND 0.39	Ū	ND 0.42	U	
Dibenzofuran		ND 0.4	U	ND 0.4	11	ND 0.4	U	ND 0.41	U.	ND 0.4	Ü	ND 0.39		ND 0.42		
2,4-Dinitrotoluene		ND 0.4	U	ND 0.4	U II	ND 0.4	11	ND 0.41	U	ND 0.4	Ü	ND 0.39		ND 0.42		
Diethylphthalate		ND 0.4 ND 0.4	U	ND 0.4	11	ND 0.4	Ü	ND 0.41	U	ND 0.4	Ü	ND 0.39		ND 0.42		
4-Chlorophenyl-phenylether		1	Ü	1	U 11	ND 0.4	U	ND 0.41	U	ND 0.4	Ü	ND 0.39		ND 0.42		
luorene		0.15 0.4	J	ND 0.4	<i>U</i>			ND 0.41	U	ND 0.4	U	ND 0.39	U	ND 2.1	U	
4-Nitroaniline		ND 2	U	ND 2	U	ND 2	U		U	ND 2	U	ND 2	U	ND 2.1	U	
4,6-Dinitro-2-Methylphenol		ND 2	U	ND 2	U	ND 2	U	ND 2	_	· ·	U	ND 0.39	_	ND 0.42		
N-Nitrosodiphenylamine (1)		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4		ND 0.39		ND 0.42		
4-Bromophenyl-phenylether		ND 0.4	U	ND 0.4	U	ND 0.4	U	ND 0.41	U	ND 0.4	U	ND 0.39	U			o-Tech, Inc.

TABLE 7: SOIL ANALYTICAL RESULTS

BORING/ WELL I.D.	SB-9 DUP	1	SB-9 R	ERUN	SB-10		SB-10		TB1	RB-1		RB-2		RB-3	
SAMPLING DATE	12/6/93		12/6	/93	12/8/93		12/8/93		12/6/93	12/6/93		12/7/93		12/8/93	
SAMPLING DEPTH/INTERVAL	18-19'	•	18-1	19'	7.5-9'		17.5-18.5	''	-	-		_		-	
SEMI-VOLATILE ORGANICS (mg/kg)	<i>18.5-19'</i> RL	flag	18.5-19' F	L flag	<i>8-9</i> ' RL	flag	18-18.5' RL	flag		mg/l RL	flag	mg/l RL	flag	mg/l RL	flag
Phenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		0.003 0.01	J	0.03 0.01		ND 0.011	U
bis (2-Chloroethyl) Ether	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
2-Chlorophenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
1,3-Dichlorobenzene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
1,4-Dichlorobenzene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	υ	ND 0.011	U
Benzyl Alcohol	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
1,2-Dichlorobenzene	ND 0.4	IJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
2-Methylphenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
bis (2-Chloroisopropyl) Ether	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	υ	ND 0.011	U
4-Methylphenol	ND 0.4	UR	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
N-Nitroso-Di-n-Propylamine	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
Hexachloroethane	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	υ	ND 0.01	U	ND 0.011	U
Nitrobenzene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
Isophorone	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
2-Nitrophenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
2,4-Dimethylphenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	0.001 0.011	J
Benzoic Acid	ND 2	UJR	ND	2 UJ	ND 2.2	Ü	ND 2	U		0.035 0.05	J	0.047.0.05	J	0.016 0.055	J
bis (2-Chloroethoxy) Methane	ND 0.4	IJ	ND	0.4 UJ	ND 0.44	Ú	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
2,4-Dichlorophenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	Ū	ND 0.4	Ū		ND 0.01	U	ND 0.01	υ	ND 0.011	U
1,2,4-Trichlorobenzene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	Ū	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	U
Naphthalene	ND 0.4	บัว	ND	0.4 UJ	ND 0.44	Ū	ND 0.4	Ū		ND 0.01	U	ND 0.01	U	ND 0.011	U
4-Chloroaniline	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	Ū	ND 0.4	Ū		ND 0.01	U	ND 0.01	U	ND 0.011	U
Hexachlorobutadiene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	Ū	ND 0.4	Ū		ND 0.01	U	ND 0.01	U	ND 0.011	U
4-Chloro-3-Methylphenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	Ü	ND 0.4	Ü		ND 0.01	U	ND 0.01	υ	ND 0.011	U
2-Methylnaphthalene	ND 0.4	UJ	0.044	0.4 J	ND 0.44	ŭ	ND 0.4	Ü		ND 0.01	U	ND 0.01	U	ND 0.011	U
Hexachlorocyclopentadiene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	Ü	ND 0.4	Ü		ND 0.01	Ū	ND 0.01	U	ND 0.011	U
2,4,6-Trichlorophenol	ND 0.4	UJR	ND	0.4 UJ	ND 0.44	Ü	ND 0.4	Ü		ND 0.01	Ū	ND 0.01	U	ND 0.011	U
2,4,5-Trichlorophenol	ND 2	UJR	ND	2 UJ	ND 2.2	Ü	ND 2	Ü		ND 0.05	Ü	ND 0.05	Ū	ND 0.055	
2-Chloronaphthalene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	ij	ND 0.4	Ü		ND 0.01	Ü	ND 0.01	Ū	ND 0.011	
2-Chloronaphthalene 2-Nitroaniline	ND 2	UJ.	ND	2 UJ	ND 2.2	11	ND 2	H		ND 0.05	U	ND 0.05	Ü	ND 0.055	
Dimethyl Phthalate	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	11	ND 0.4	Ü		ND 0.01	Ŭ	ND 0.01	Ŭ	ND 0.011	
	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	ш	ND 0.4	Ü		ND 0.01	Ü	ND 0.01	Ü	ND 0.011	
Acenaphthylene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	11	ND 0.4	Ü		ND 0.01	Ű	ND 0.01	Ŭ	ND 0.011	
2,6-Dinitrotoluene	ND 0.4	UJ	ND	2 UJ	ND 0.44 ND 2.2	U	ND 0.4	. U		ND 0.05	Ü	ND 0.05	Ü	ND 0.055	
3-Nitroaniline	ND 2 ND 0.4	UJ UJ	ND	0.4 UJ	ND 0.44		ND 0.4	U		ND 0.01	Ü	ND 0.01	U	ND 0.011	
Acenaphthene	ND 0.4	UJR	ND	0.4 03 2 UJ	ND 0.44 ND 2.2	- 11	ND 2	U		ND 0.05	U	ND 0.05	Ü	ND 0.055	
2,4-Dinitrophenol	l .		ND	2 UJ	ND 2.2 ND 2.2	U	ND 2	U		ND 0.05	U	ND 0.05	. U	ND 0.055	
4-Nitrophenol	ND 2	UJR	ı			U	ND 0.4	U		ND 0.03	U	ND 0.01	U	ND 0.011	
Dibenzofuran	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	-				ND 0.01	U	ND 0.01	U	ND 0.011	
2,4-Dinitrotoluene	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		1	-	ND 0.01	U	ND 0.011	
Diethylphthalate	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U		U	ND 0.011	
4-Chlorophenyl-phenylether	ND 0.4	UJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	Ų		ND 0.01	U	ND 0.01	-	ND 0.011	
Fluorene	ND 0.4	UĴ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U		
4-Nitroaniline	ND 2	UJ	ND	2 UJ	ND 2.2	U	ND 2	U		ND 0.05	U	ND 0.05	U	ND 0.055	
4,6-Dinitro-2-Methylphenol	ND 2	UJR	ND	2 UJ	ND 2.2	U	ND 2	U		ND 0.05	U	ND 0.05	U	ND 0.055	
N-Nitrosodiphenylamine (1)	ND 0.4	IJ	ND	0.4 UJ	ND 0.44	U	ND 0.4	U		ND 0.01	U	ND 0.01	U	ND 0.011	I U

TABLE 7: SOIL ANALYTICAL RESULTS

BORING/ WELL I.D.	SB-9 DUP1	SB-9 RERUN	SB-10	SB-10	TB1	RB-1	RB-2	RB-3
SAMPLING DATE	12/6/93	12/6/93	12/8/93	12/8/93	12/6/93	12/6/93	12/7/93	12/8/93
SAMPLING DEPTH/INTERVAL	18-19'	18-19'	7.5-9'	17.5-18.5'	- 1	-	-	-
4-Bromophenyl-phenylether	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Hexachlorobenzene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Pentachlorophenol	ND 2 UJR	ND 2UJ	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
Phenanthrene	ND 0.4 UJ	0.056 0.4 J	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Anthracene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Di-n-Butylphthalate	ND 0.4 UJ	0.32 0.4 J	ND 0.44 BU	ND 0.4 BU		ND 0.01 U	ND 0.01 U	ND 0.011 U
Fluoranthene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U	•	ND 0.01 U	ND 0.01 U	ND 0.011 U
Pyrene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Butylbenzylphthalate	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
3,3'-Dichlorobenzidine	ND 0.79 UJ	ND 0.79 UJ	ND 0.87 U	ND 0.79 U		ND 0.02 U	ND 0.02 U	ND 0.022 U
Benzo (a) Anthracene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Chrysene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
bis (2-Ethylhexyl) Phthalate	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		0.001 0.01 J	ND 0.01 U	ND 0.011 U
Di-n-Octyl Phthalate	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Benzo (b) Fluoranthene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Benzo (k.) Fluoranthene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Benzo (a) Pyrene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U	,	ND 0.01 U	ND 0.01 U	ND 0.011 U
Indeno (1,2,3-cd) Pyrene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Dibenzo (a,h) Anthracene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Benzo (g,h,i) Perylene	ND 0.4 UJ	ND 0.4 UJ	ND 0.44 U	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
Pyridine	ND 2 UJ	ND 2 UJ	ND 2.2 U	ND 2 U		ND 0.05 U	ND 0.05 U	ND 0.055 U
3-Picoline	ND 0.4 UJ	ND 0.4 UJ	4.4 0.87	ND 0.4 U		ND 0.01 U	ND 0.01 U	ND 0.011 U
1-Methyl-2-pyrrolidinone	ND 0.79 UJ	ND 0.79 W	ND 0.87 U	ND 0.79 U		ND 0.02 U	ND 0.02 U	ND 0.022 U
N,N-Dimethylacetamide								
Lab Name	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast	Weston-Gulf Coast
Analytical Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method	E.P.A. Method
	8240	8240	8240	8240	8240	8240	8240	8240
Source Document(s)	2	2	2	2	2	2	2	2

¹ Supplemental Investigation Report - Chicago Recycle Center - Safety-Kleen Corp. Append D, Dec. 1991

² Loose Lab Sheet by Weston-Gulf Coast, Inc. Dec. 1993, Jan. 1994

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

UR Analyte was not detected but the results are unreliable due to serious deficiencies in the analysis

ND Non-Detected

RL Reporting Limit

TB Trip Blank

RB Rinse Blank

J Red color indicates the corrected data qualifier

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO,IL

WELL I.D.	P1	P2	P3	P4		MW-1		MW-1		MW-1 REF		MW-1		MW-2	
SAMPLING DATE	5/9/91	5/9/91	5/9/91	5/9/9	1	11/7/91		12/21/93	3	12/21/9	3	2/15/94		11/7/91	
SAMPLING DEPTH/INTERVAL (ft)				·		4-9		4-9		4-9		4-9		5-10	
VOLATILE ORGANICS (mg/L)	RL F	ag RL Fla	ag RL F	lag RL	Flag		Flag	RL	Flag	RL	Flag	RL.	Flag	RL	Flag
Chloromethane	nd 10	nd 1L	nd 0.002	nd 0.02		nd 0.05		nd 0.1	U			nd 0.1	U	nd 0.2	
Bromomethane	nd 10	nd 1L	nd 0.002	nd 0.02		nd 0.05		nd 0.1	U			nd 0.1	U	nd 0.2	
Vinyl Chloride	nd 5	nd 0.5L	nd 0.001	nd 0.01		1.1 0.05		0.07 0.1	J			0.25 0.1		0.26 0.2	
Chloroethane	nd 10	nd 1L	0.004	0.02		1.9 1		1 0.1				0.95 0.1	l	nd 0.2	
Methylene Chloride	9.5	nd 0.5L	0.002	0.01		0.15 0.025		nd 0.05	U			nd 0.05	U	12 0.5	
Acetone						0.13 0.05		nd 0.1	U			nd 0.1	U	4.7 1	
Carbon Disulfide						nd 0.025		nd 0.05	U			nd 0.05	U	0.75 0.1	
1,1-Dichloroethene	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	0.26 0.1	
1,1-Dichloroethane	nd 5	nd 0.5L	0.023	0.1		0.1 0.025		nd 0.05	U			0.036 0.05	. J	0.46 0.1	
1,2-Dichloroethene (total)	nd 5	nd 0.5L	0.005	0.02		1.1 0.025		0.16 0.05				0.1 0.05		3.9 0.1	
Chloroform	50	nd 0.5L	0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	54 10	
1,2-Dichloroethane	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
2-Butanone				•		nd 0.05		nd 0.1	U			nd 0.1	U	0.7 0.2	
1,1,1-Trichloroethane	nd 10	nd 1L	nd 0.002	0.03		0.016 0.025	J	nd 0.05	U			nd 0.05	U	2.5 0.1	
Carbon Tetrachloride	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	0.98 0.1	
Vinyl Acetate						nd 0.05		nd 0.1	U			nd 0.1	U	nd 0.2	
Bromodichloromethane	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
1,2-Dichloropropane	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	υ			nd 0.05	U	0.079 0.1	J
cis-1,3-Dichloropropene	nd 10	nd 1L	nd 0.002	nd 0.02		nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
Trichloroethene	nd 10	nd 1L	0.003	0.03		0.057 0.025		0.28 0.05				nd 0.05	· U	16 0.5	
Dibromochloromethane						nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
1,1,2-Trichloroethane	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
Benzene	nd 5	nd 0.5L	nd 0.001	nd 0.01		0.48 0.025		0.42 0.05				0.31 0.05		8.1 0.5	
Trans-1,3-Dichloropropene	nd 10	nd 1L	nd 0.002	nd 0.02		nd 0.025		nd 0.05	Ū			nd 0.05	U	nd 0.1	
Bromoform	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
4-Methyl-2-pentanone						0.039 0.05	J	nd 0.1	U			nd 0.1	U	nd 0.2	
2-Hexanone						nd 0.05		nd 0.1	U			nd 0.1	U	nd 0.2	
Tetrachloroethene	nd 10	nd 1L	nd 0.002	nd 0.02		nd 0.025		0.28 0.05				nd 0.05	U	0.44 0.1	
1,1,2,2-Tetrachloroethane	nd 10	nd 1L	nd 0.002	nd 0.02		nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
Toluene	470	nd 0.5L	nd 0.001	nd 0.01		0.53 0.025		0.38 0.05	_			0.15 0.05		300 10	
Chlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		nd 0.05	U			nd 0.05	U	nd 0.1	
Ethylbenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01		nd 0.025		0.04 0.05	.]			nd 0.05		0.3 0.1	
Styrene	110 5	110 0.02	110 0,001	110 0.01		nd 0.025		nd 0.05	Ŭ			nd 0.05		nd 0.1	
	nd 15	nd 1.5L	nd 0.003	nd 0.03	•	nd 0.025		0.14 0.05	J			nd 0.05		2 0.1	
Total Xylenes	nu 15	I IIU F.OL	110 0.003	110 0.03		2.1 0.5		9.2 0.5				9.5 2.5	•	nd 0.1	
Tetrahydrofuran						nd 0.05		nd 0.1	U			nd 0.1	U	4.2 1	
Trichlorotrifluoroethane	24 5	nd 0.5L	nd 0.001	nd 0.01		110 0.05		liu 0.1	J			, id 0.1	J		
Chlorodibromomethane	nd 5	1	nd 0.001	nd 0.01						-					
2-Chloroethylvinylether	nd 25	nd 2.5L													
Flouorotrichloromethane	nd 10	nd 1L	nd 0.002	nd 0.02											
Dichlorodifluoromethane	nd 10	nd 1L	nd 0.002	nd 0.02	•	I								I	

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO,IL

WELL I.D.	P1	P2	P3	P4	MW-1	MW-1	MW-1 RERUN	MW-1	MW-2
SAMPLING DATE	5/9/91	5/9/91	5/9/91	5/9/91	11/7/91	12/21/93	12/21/93	2/15/94	11/7/91
SAMPLING DEPTH/INTERVAL (ft)					4-9	4-9	4-9	4-9	5-10
SEMI-VOLATILE ORGANICS (mg/L)									
Phenol					0.02 0.06 J	0.012 0.05 J	0.014 0.11 J	nd 0.1 U	nd 2
bis(2-Chloroethyl) ether					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2-Chlorophenol					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
1,3-Dichlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
1,4-Dichlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.06	nd 0.05 U	nd 0.11 U	. nd 0.1 U	nd 2
Benzyl alcohol					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	0.45 2
1,2-Dichlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2-Methylphenol				1	0.05 0.06 J	0.006 0.05 J	nd 0.11 U	nd 0.1 U	0.49 2 J
bis(2-Chloroisopropyl) ether					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
4-Methylphenol					0.01 0.06 J	nd 0.05 U	0.016 0.11 J	nd 0.1 U	nd 2
N-Nitroso-Di-n-propylamine					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Hexachloroethane			1		nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Nitrobenzene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Isophorone					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2-Nitrophenol	'				nd 0.06	nd 0.05 U	nd 0.1∜ U	nd 0.1 U	nd 2
2,4-Dimethylphenol					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Benzoic acid					nd 0.3	nd 0.25 U	nd 0.55 U	nd 0.5 U	1.5 9.8 J
bis(2-Chloroethoxy)methane					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2,4-Dichlorophenol					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
1,2,4-Trchlorobenzene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Naphthalene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
4-Chloroaniline					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Hexachlorobutadiene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
4-Chloro-3-Methylphenol					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2-Methylnaphthalene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Hexachlorocyclopentadiene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2,4,6-Trichlorophenol					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2,4,5-Trichlorophenol	1				nd 0.3	nd 0.25 U	nd 0.55 U	nd 0.5 U	nd 9.8
2-Chloronaphthalene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2-Nitroaniline					nd 0.3	nd 0.25 U	nd 0.55 U	nd 0.5 U	nd 9.8
Dimethyl Phthalate					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Acenaphthylene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
2,6-Dinitrotoluene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
3-Nitroaniline					nd 0.30	nd 0.25 U	nd 0.55 U	nd 0.1	nd 9.8
Acenaphthene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 9.8
	.*				nd 0.3	nd 0.05 U	nd 0.17 U	nd 0.5 U	nd 9.8
2,4-Dinitrophenol					nd 0.3			nd 0.5 U	nd 9.8
4-Nitrophenol					· '				(
Dibenzofuran					nd 0.06	nd 0.05 U	nd 0.11 U	0	nd 2
2,4-Dinitrotoluene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Diethylphthalate					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
1-Chlorophenyl-phenylether		,			nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
, _f uorene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
4-Nitroaniline					nd 0.3	nd 0.25 U	nd 0.55 U	nd 0.5 U	nd 9.8

TABLE 8: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	P1	P2	P3	P4	MW-1	MW-1	MW-1 RERUN	MW-1	MW-2
SAMPLING DATE	5/9/91	5/9/91	5/9/91	5/9/91	11/7/91	12/21/93	12/21/93	2/15/94	11/7/91
SAMPLING DEPTH/INTERVAL (ft)					4-9	4-9	4-9	4-9	5-10
4,6-Dinitro-2-Methylphenol			·		nd 0.3	nd 0.25 U	nd 0.55 U	nd 0.5 U	nd 9.8
N-Nitrosodiphenylamine (1)					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
4-Bromophenyl-phenylether					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Hexachlorobenzene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Pentachlorophenol					nd 0.3	nd 0.25 U	nd 0.55 U	nd 0.5 U	nd 9.8
Phenanthrene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Anthracene			•		nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Di-n-Butylphthalate					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Fluoranthene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Pyrene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Butylbenzylphthalate					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
3,3'-Dichlorobenzidine					nd 0.12	nd 0.1 U	nd 0.22 U	nd 0.2 U	nd 3.9
Benzo (a) Anthracene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Chrysene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
bis (2-Ethylhexyl) Phthalate	1.				nd 0.06	nd 0.05 U	0.033 0.11 J	nd 0.1 U	nd 2
Di-n-Octyl Phthalate					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Benzo (b) Fluoranthene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Benzo (k)Fluoranthene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Benzo (a) Pyrene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Indeno (1,2,3-cd) Pyrene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Dibenzo (a,h) Anthracene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Benzo (g,h,i) Perylene					nd 0.06	nd 0.05 U	nd 0.11 U	nd 0.1 U	nd 2
Pyridine				, 	0.05 0.06 J	nd 0.25 U	nd 0.55 U	nd 0.5 U	2.4 2
3-Picoline			8		2.7 0.3	5.4 0.5	3.6 0.11 E	2.3 0.2	290 39
1-Methyl-2-pyrrolidinone*					0.11	0.14 0.1 J	0.18 0.22 J	0.18 0.1	12
N,N-Dimethylacetamide					0.18 0.06			0.043 0.1 J	850 39
Lab Name	RMT	RMT	RMT	RMT	WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	WESTON
Analytical Method	8010&	8010&	8010&	8010&	EPA	EPA	EPA	EPA	EPA
	8020	8020	8020	8020	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	1	1	1	1	1	2	2	1	1

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

E Concentration exceeds the instrument calibration range and was subsequently diluted

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO,IL

WELL I.D.	MW-2		MW-2 RERUN	MW-2	MW-2 DUP	MW-3	MW-3 Dup?	MW-3	MW-3 RERUN	MW-3
SAMPLING DATE	12/21/93		12/21/93	2/15/94	2/15/94	11/7/91	11/7/91	12/21/93	12/21/93	2/16/94
SAMPLING DEPTH/INTERVAL (ft)	5-10		5-10	5-10	<i>5-10</i>	5-10	?	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)										
Phenol	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	0.022 0.076 J	0.024 0.088 J	nd 0.1 U	nd 0.1 U	nd 0.2 U
bis(2-Chloroethyl) ether	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2-Chlorophenol	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
1,3-Dichlorobenzene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
1,4-Dichlorobenzene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Benzyl alcohol	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
1,2-Dichlorobenzene	0.15 1	J	0.14 1 J	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2-Methylphenol	0.22 1	J	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	0.089 0.2 J
bis(2-Chloroisopropyl) ether	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
4-Methylphenol	0.5 1	J	0.52 1 J	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	0.016 0.1 J	nd 0.1 U	0.59 0.2
N-Nitroso-Di-n-propylamine	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Hexachloroethane	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Nitrobenzene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Isophorone	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2-Nitrophenol	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2,4-Dimethylphenol	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	0.039 0.076 J	0.037 0.088 J	0.02 0.1 J	0.019 0.1 J	nd 0.2 U
Benzoic acid	1.5 5	j	2.1 5 J	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U
bis(2-Chloroethoxy)methane	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2,4-Dichlorophenol	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
1,2,4-Trchlorobenzene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Naphthalene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	0.05 0.076 J	0.055 0.088 J	0.03 0.1 J	0.032 0.1 J	nd 0.2 U
4-Chloroaniline	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Hexachlorobutadiene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
4-Chloro-3-Methylphenol	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2-Methylnaphthalene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	0.007 0.076 J	0.008 0.088 J	nd 0.1 U	nd 0.1 U	nd 0.2 U
Hexachlorocyclopentadiene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2,4,6-Trichlorophenol	nd 1	U ·	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2,4,5-Trichlorophenol	nd 5	U	nd 5 U	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U
2-Chloronaphthalene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2-Nitroaniline	nd 5	U	nd 5 U	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U
Dimethyl Phthalate	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Acenaphthylene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
2,6-Dinitrotoluene	nd 1	U	0.21 1 J	nd 3.2 U	nd 2 Ų	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
3-Nitroaniline	nd 5	U	nd 5 U	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U
Acenaphthene	nd 1	U	, nd 1 U	nd 3.2 U	nd 2 U	0.018 0.076 J	0.02 0.088 J	0.01 0.1 J	0.01 0.1 J	nd 0.2 U
2,4-Dinitrophenol	nd 5	U	nd 5 U	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1
4-Nitrophenol	nd 5	U	nd 5 U	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U
Dibenzofuran	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	0.009 0.076 J	0.01 0.088 J	nd 0.1 U	nd 0.1 U	nd 0.2 L
2,4-Dinitrotoluene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Diethylphthalate	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
1-Chlorophenyl-phenylether	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 L
,-luorene	nd 1	U	nd 1 U	nd 3.2 U	nd 2 U	0.012 0.076 J	0.056 0.088 J	nd 0.1 U	nd 0.1 U	nd 0.2 L
4-Nitroaniline	nd 5	U	nd 5 U	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO,IL

WELL I.D.	MW-2	MW-2 RERUN	MW-2	MW-2 DUP	MW-3	MW-3 Dup?	MW-3	MW-3 RERUN	MW-3
SAMPLING DATE	12/21/93	12/21/93	2/15/94	2/15/94	11/7/91	11/7/91	12/21/93	12/21/93	2/16/94
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	?	5-10	5-10	<i>5-10</i>
4,6-Dinitro-2-Methylphenol	nd 5 U	nd 5 U	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U
N-Nitrosodiphenylamine (1)	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
4-Bromophenyl-phenylether	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Hexachlorobenzene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Pentachlorophenol	nd 5 U	nd 5 U	nd 16 · U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 U	nd 1 U
Phenanthrene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	0.011 0.076 J	0.013 0.088 J	nd 0.1 U	nd 0.1 U	nd 0.2 U
Anthracene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Di-n-Butylphthalate	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Fluoranthene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Pyrene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Butylbenzylphthalate	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
3,3'-Dichlorobenzidine	nd 2 U	nd 2 U	nd 6.4 U	nd 4 U	nd 0.15	nd 0.18	nd 0.2 U	nd 0.2 U	nd 0.4 U
Benzo (a) Anthracene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Chrysene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
bis (2-Ethylhexyl) Phthalate	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Di-n-Octyl Phthalate	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Benzo (b) Fluoranthene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Benzo (k.) Fluoranthene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Benzo (a) Pyrene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Indeno (1,2,3-cd) Pyrene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Dibenzo (a,h) Anthracene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Benzo (g,h,i) Perylene	nd 1 U	nd 1 U	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 U	nd 0.2 U
Pyridine	nd 5 U	nd 5 U	6.5 3.2	2.5 2	0.064 0.076 J	0.071 0.088 J	nd 0.5 U	nd 0.5 U	1.3 1
3-Picoline	670 50	230 1 E	190 160	160 160	4.6 0.38	4.9 0.44	9.9 1	4.6 0.1 E	530 100
1-Methyl-2-pyrrolidinone*	1100 100	160 2 E	74 160 J	61 160 J	0.16	0.2	1.3 0.2	1.4 0.2	140 10
N,N-Dimethylacetamide			1800 160	1500 160	22 1.5	2.7 1.8			21000 2000
Lab Name	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	WESTON	WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON
Analytical Method	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA ·
	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	2	2	1	1	1	1	2	2	1

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

E Concentration exceeds the instrument calibration range and was subsequently diluted

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO,IL

WELL I.D.	MW-4	MW-4 RERUN	MW-4	MW-5	MW-5 RERUN	MW-5	MW-6	MW-6 RERUN	MW-7	MW-7 RERUN
SAMPLING DATE	12/21/93	12/21/93	2/15/94	12/20/93	12/20/93	2/15/94	12/21/93	12/21/93	12/21/93	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
VOLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag
Chloromethane	0.12 0.1		0.11 0.05	nd 0.01 U		nd 0.01 U	nd 0.1 U		nd 1 U	
Bromomethane	nd 0.1 U		nd 0.05 U	nd 0.01 U		nd 0.01 U	nd 0.1 U		nd 1 U	
Vinyl Chloride	0.1 0.1		0.085 0.05	nd 0.01 U		nd 0.01 U	nd 0.1 U		1.9 1	
Chloroethane	nd 0.1 U		0.038 0.05 J	nd 0.01 U		nd 0.01 U	nd 0.1 U	•	6.1 1	
Methylene Chloride	1.8 0.05		1.5 0.25	nd 0.005 U		nd 0.005 U	nd 0.05 U	:	0.51 0.5	
Acetone	2.8 1 B		nd 0.05 U	nd 0.01 U		nd 0.01 U	nd 0.1 U	1	5.6 5 B	
Carbon Disulfide	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
1,1-Dichloroethene	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
1,1-Dichloroethane	nd 0.05 U		0.018 0.025 J	0.016 0.005		0.004 0.005 J	nd 0.05 U		4.6 0.5	
1,2-Dichloroethene (total)	0.068 0.05		0.17 0.025	nd 0.005 U		nd 0.005 U	nd 0.05 U		3 0.5	
Chloroform	1.2 0.05		0.4 0.025	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
1,2-Dichloroethane	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
2-Butanone	0.21 0.1		0.17 0.05	nd 0.01 U		nd 0.01 U	nd 0.1 U		1.7 1	
1,1,1-Trichloroethane	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Carbon Tetrachloride	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Vinyl Acetate	nd 0.1 U		nd 0.05 U	nd 0.01 U		nd 0.01 U	nd 0.1 U		nd 1 U	
Bromodichloromethane	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
1,2-Dichloropropane	nd 0.05 U		0.012 0.025 J	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
cis-1,3-Dichloropropene	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Trichloroethene	0.026 0.05 J		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Dibromochloromethane	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
1,1,2-Trichloroethane	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Benzene	5.5 0.5	:	3.2 0.25	0.003 0.005 J		0.003 0.005 J	nd 0.05 U		4.2 0.5	
Trans-1,3-Dichloropropene	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Bromoform	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U	•	nd 0.5 U	
4-Methyl-2-pentanone	0.83 0.1		0.7 0.5	nd 0.01 U		nd 0.01 U	nd 0.1 U		6.7 1	
2-Hexanone	nd 0.1 U		nd 0.05 U	nd 0.01 U		nd 0.01 U	nd 0.1 U		nd 1 U	
Tetrachloroethene	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
1,1,2,2-Tetrachloroethane	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Toluene	0.8 0.05		0.71 0.025	nd 0.005 U		nd 0.005 U	nd 0.05 U		13 2.5	
Chlorobenzene	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Ethylbenzene	0.11 0.05		0.077 0.025	nd 0.005 U		nd 0.005 U	nd 0.05 U		3.7 0.5	
Styrene	nd 0.05 U		nd 0.025 U	nd 0.005 U		nd 0.005 U	nd 0.05 U		nd 0.5 U	
Total Xylenes	0.073 0.05		0.047 0.025	nd 0.005 U		nd 0.005 U	nd 0.05 U		2.9 0.5	
Tetrahydrofuran	20 0.5		23 0.25	0.015 0.005		0.096 0.005	6 0.25		22 2.5	
Trichlorotrifluoroethane	nd 0.1 U		nd 0.05 U	nd 0.01 U		nd 0.01 U	nd 0.1 U		nd 1 U	
Chlorodibromomethane										
2-Chloroethylvinylether				,						
Flouorotrichloromethane										
Dichlorodifluoromethane				1						

TABLE 8: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-4	MW-4 RERUN	MW-4	MW-5	MW-5 RERUN	MW-5	MW-6	MW-6 RERUN	MW-7	MW-7 RERUN
SAMPLING DATE	12/21/93	12/21/93	2/15/94	12/20/93	12/20/93	2/15/94	12/21/93	12/21/93	12/21/93	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)	1									
Phenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
bis(2-Chloroethyl) ether	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
2-Chlorophenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
1,3-Dichlorobenzene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
1,4-Dichlorobenzene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Benzyl alcohol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
1,2-Dichlorobenzene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
2-Methylphenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
bis(2-Chloroisopropyl) ether	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
4-Methylphenol	0.36 1.2 J	0.33 1 J	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	0.064 0.05	0.059 0.05
N-Nitroso-Di-n-propylamine	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Hexachloroethane	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 L
Nitrobenzene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Isophorone	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 l
2-Nitrophenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 l
2,4-Dimethylphenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	0.045 0.05 J	0.053 0.05
Benzoic acid	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25
bis(2-Chloroethoxy)methane	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2,4-Dichlorophenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
1,2,4-Trchlorobenzene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
Naphthalene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	0.006 0.05
4-Chloroaniline	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
Hexachlorobutadiene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
4-Chloro-3-Methylphenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2-Methylnaphthalene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
Hexachlorocyclopentadiene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2,4,6-Trichlorophenol	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2,4,5-Trichlorophenol	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25
2-Chloronaphthalene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2-Nitroaniline	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25
Dimethyl Phthalate	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
Acenaphthylene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2,6-Dinitrotoluene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
3-Nitroaniline	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25
Acenaphthene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2,4-Dinitrophenol	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25
4-Nitrophenol	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25
Dibenzofuran	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
2,4-Dinitrotoluene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
Diethylphthalate	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
1-Chlorophenyl-phenylether	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
rluorene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05
4-Nitroaniline	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25

TABLE 8: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-4	MW-4 RERUN	MW-4	MW-5	MW-5 RERUN	MW-5	MW-6	MW-6 RERUN	MW-7	MW-7 RERUN
SAMPLING DATE	12/21/93	12/21/93	2/15/94	12/20/93	12/20/93	2/15/94	12/21/93	12/21/93	12/21/93	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
4,6-Dinitro-2-Methylphenol	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25 U
N-Nitrosodiphenylamine (1)	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
4-Bromophenyl-phenylether	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Hexachlorobenzene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Pentachlorophenol	nd 6.2 U	nd 5 U	nd 25 ∪	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	nd 0.25 U	nd 0.25 U
Phenanthrene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Anthracene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Di-n-Butylphthalate	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Fluoranthene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Pyrene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Butylbenzylphthalate	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
3,3'-Dichlorobenzidine	nd 2.5 U	nd 2 U	nd 10 U	nd 0.02 U	nd 0.02 U	nd 0.02 U	nd 0.04 U	nd:0.04 U	nd 0.1 U	nd 0.1 U
Benzo (a) Anthracene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Chrysene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
bis (2-Ethylhexyl) Phthalate	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Di-n-Octyl Phthalate	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Benzo (b) Fluoranthene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Benzo (k.) Fluoranthene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Benzo (a) Pyrene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Indeno (1,2,3-cd) Pyrene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Dibenzo (a,h) Anthracene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Benzo (g,h,i) Perylene	nd 1.2 U	nd 1 U	nd 5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.02 U	nd 0.02 U	nd 0.05 U	nd 0.05 U
Pyridine	nd 6.2 U	nd 5 U	nd 25 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.1 U	nd 0.1 U	3.4 25	1.3 0.25 E
3-Picoline	59 6.2	32 1 E	42 5	nd 0.01 U	nd 0.01 U	nd 0.01 U	0.66 0.05	0.28 0.02	26 5	9.2 0.05 E
1-Methyl-2-pyrrolidinone*	13 2.5	10 2	7.1 5	nd 0.02 U	nd 0.02 U	nd 0.01 U	nd 0.04 U	nd 0.04 U	23 10	8.8 0.1 E
N,N-Dimethylacetamide			2900 1000			nd 0.01 U				
Lab Name	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON
Analytical Method	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	2	2	1	2	2	1	2	2	2	2

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

E Concentration exceeds the instrument calibration range and was subsequently diluted

TABLE 8: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-7	MW-8	MW-8 RERUN	MW-8	l	MW-9		MW-9 RERU	N	MW-9		MW-10		MW-10 RERUN	MW-10 E	
SAMPLING DATE	2/15/94	12/21/93	12/21/93	2/14/94		12/21/93		12/21/93		2/15/94		12/21/93	}	12/21/93	12/21/9	
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10		5-10		5-10		5-10		5-10		5-10	5-10	
OLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL	Flag	RL	Flag	RL	Flag	RL	Flag	RL	Flag	RL Flag	RL	Fla
Chloromethane	nd 0.5 U	nd 1 U		nd 0.5	υ	nd 0.1	U	nd 0.01	U	nd 0.01	U	nd 1	U		nd 1	U
Bromomethane	nd 0.5 U	nd 1 U	:	nd 0.5	U	nd 0.1	U	nd 0.01	U	nd 0.01	U	nd 1	U		nd 1	U
Vinyl Chloride	0.24 0.5 J	0.67 1 J		0.67 0.5		nd 0.1	U	0.032 0.01		0.027 0.01		nd 1	U		nd 1	U
Chloroethane	0.32 0.5 J	nd 1 U		nd 0.5	U	nd 0.1	U	0.006 0.01	J	nd 0.01	U	1.5 1			1.6 1	
Methylene Chloride	nd 0.25 U	0.63 0.5		0.62 0.25		nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 U
Acetone	2.1 0.5	11 1 B		12 5		0.11.0.1	В	0.01 0.01	В	nd 0.01	U	nd 1	U		0.68 1	J
Carbon Disulfide	nd 0.25 U	nd 0.5 U		nd 0.25	υļ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 U
1,1-Dichloroethene	nd 0.25 U	0.72 0.5		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 U
1,1-Dichloroethane	0.32 0.25	1.1 0.5		1.2 0.25		0.078 0.05		0.027 0.005		0.045 0.005		0.33 0.5	J		0.28 0.5	
1,2-Dichloroethene (total)	0.63 0.25	2 0.5		3.2 0.25	- 1	0.047 0.05		0.05 0.005		0.051 0.005		nd 0.5	U		nd 0.5	
Chloroform	nd 0.25 U	2.7 0.5		nd 0.25	U	0.049 0.05	J	0.048 0.005		0.048 0.005		nd 0.5	U		nd 0.5	
1,2-Dichloroethane	nd 0.25 U	10 0.5		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U	0.65 0.5			nd 0.5	5 L
2-Butanone	nd 0.5 U	2.2 1		nd 0.5	υ	nd 0.1	U	nd 0.01	Ų	nd 0.01	U	nd 1	U		nd 1	L
1,1,1-Trichloroethane	nd 0.25 U	3.1 0.5		4.2 0.25		nd 0.05	U	0.008 0.005		0.015 0.005		0.25 0.5	J		nd 0.5	5 L
Carbon Tetrachloride	nd 0.25 U	0.82 0.5		nd 0.25	υ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 L
Vinyl Acetate	nd 0.5 U	nd 1 U		nd 0.5	υ	nd 0.1	U	nd 0.01	U	nd 0.01	U	nd 1	U		nd 1	ι
Bromodichloromethane	nd 0.25 U	nd 0.5 U		nd 0.25	υ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U	-	nd 0.5	5 L
1,2-Dichloropropane	nd 0.25 U	nd 0.5 U		nd 0.25	υļ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 t
cis-1,3-Dichloropropene	nd 0.25 U	nd 0.5 U		nd 0.25	υ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 L
Trichloroethene	nd 0.25 U	3.8 0.5		0.82 0.25		0.017 0.05	J	0.015 0.005		0.007 0.005		nd 0.5	U		nd 0.5	5 l
Dibromochloromethane	nd 0.25 U	nd 0.5 U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 l
1,1,2-Trichloroethane	nd 0.25 U	nd 0.5 U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.5	5 l
Benzene	0.33 0.25	2.3 0.5		0.22 0.25	j	0.016 0.05	J	0.01 0.005		0.008 0.005		2.3 0.5			2.3 0.5	5
Trans-1,3-Dichloropropene	nd 0.25 U	nd 0.5 U		nd 0.25	υ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.!	5 l
Bromoform	nd 0.25 U	nd 0.5 U		nd 0.25	υ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.	5 l
4-Methyl-2-pentanone	1 0.5	nd 1 U		0.38 0.5	J	nd 0.1	U	nd 0.01	U	nd 0.01	U	nd 1	U		nd 1	t
2-Hexanone	nd 0.5 U	nd 1 U		nd 0.5	U	nd 0.1	U	nd 0.01	U	nd 0.01	U	nd 1	U		nd 1	ι
Tetrachloroethene	nd 0.25 U	5 0.5		1.3 0.25		nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.	5 l
1,1,2,2-Tetrachloroethane	nd 0.25 U	nd 0.5 U		nd 0.25	υ	nd 0.05	U	nd 0.005	U	nd 0.005	U	nd 0.5	U		nd 0.	5 l
Toluene	1.6 0.25	18 0.5		18 2.5		nd 0.05	U	nd 0.005	U	nd 0.005	U	6.6 0.5			6.6 0.	5
Chlorobenzene	nd 0.25 U	3 0.5		nd 0.25	U	nd 0.05		nd 0.005		nd 0.005	U	nd 0.5	U		nd 0.	5 (
Ethylbenzene	0.41 0.25	nd 0.5 U		nd 0.25	U	nd 0.05		nd 0.005		nd 0.005	U	1.1 0.5			1 0.	5
Styr e ne	nd 0.25 U	nd 0.5 U		nd 0.25	U	nd 0.05		nd 0.005		nd 0.005		nd 0.5	U		nd 0.	5 t
Total Xylenes	0.19 0.25 J	nd 0.5 U		0.22 0.25	از	nd 0.05		nd 0.005		nd 0.005		nd 0.5	U		nd 0.	
Tetrahydrofuran	22 2.5	26 1		23 2.5		0.51 0.05		0.089 0.005		0.52 0.025		32 1	-		34 1	
Trichlorotrifluoroethane	3.1 5 J	nd 1 U		9.1 0.5		nd 0.1	U	nd 0.01	U	nd 0.01		nd 1	U		nd 1	Į
Chlorodibromomethane		"-"		0			-		•		-		_		1	
2-Chloroethylvinylether																
Flouorotrichloromethane																
Dichlorodifluoromethane	·															

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO, IL

WELL I.D.	MW-7	MW-8	MW-8 RERUN	MW-8	MW-9	MW-9 RERUN	MW-9	MW-10	MW-10 RERUN	MW-10 DUP
SAMPLING DATE	2/15/94	12/21/93	12/21/93	2/14/94	12/21/93	12/21/93	2/15/94	12/21/93	12/21/93	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)	-									
Phenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	0.062 0.05	nd 0.05 U	nd 0.1 U
bis(2-Chloroethyl) ether	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2-Chlorophenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
1,3-Dichlorobenzene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
1,4-Dichlorobenzene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Benzyl alcohol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
1,2-Dichlorobenzene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2-Methylphenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	0.024 0.05 J	0.025 0.05 J	0.022 0.1 J
bis(2-Chloroisopropyl) ether	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
4-Methylphenol	0.21 0.4 J	nd 0.1 U	0.15 0.2 J	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	0.04 0.05 J	0.045 0.05 J	0.041 0.1 J
N-Nitroso-Di-n-propylamine	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Hexachloroethane	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Nitrobenzene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Iso phorone	nd 0.4 U	0.1 0.1 J	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2-Nitrophenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2,4-Dimethylphenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	0.046 0.05 J	0.046 0.05 J	0.04 0.1 J
Benzoic acid	1.1 2 J	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
bis(2-Chloroethoxy)methane	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2,4-Dichlorophenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
1,2,4-Trchlorobenzene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Naphthalene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
4-Chloroaniline	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
He xachlorobutadiene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
4-Chloro-3-Methylphenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2-Methylnaphthalene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Hex achlorocyclopentadiene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2,4,6-Trichlorophenol	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2,4,5-Trichlorophenol	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
2-Chloronaphthalene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2-Nitroaniline	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
Dimethyl Phthalate	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Acenaphthylene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2,6-Dinitrotoluene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
3-Nitroaniline	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
Acenaphthene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2,4-Dinitrophenol	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
4-Nitrophenol	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
Dilbenzofuran	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
2,4-Dinitrotoluene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Diethylphthalate	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
1-Chlorophenyl-phenylether	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
,-luorene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
4-Nitroaniline	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U

TABLE 8: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-7	MW-8	MW-8 RERUN	MW-8	MW-9	MW-9 RERUN	MW-9	MW-10	MW-10 RERUN	MW-10 DUP
SAMPLING DATE	2/15/94	12/21/93	12/21/93	2/14/94	12/21/93	12/21/93	2/15/94	12/21/93	12/21/93	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
4,6-Dinitro-2-Methylphenol	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
N-Nitrosodiphenylamine (1)	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
4-Bromophenyl-phenylether	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Hexachlorobenzene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Pentachlorophenol	nd 2 U	nd 0.5 U	nd 1 U	nd 2.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
Phenanthrene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Anthracene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Di-n-Butylphthalate	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Fluoranthene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Pyrene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 · U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Butylbenzylphthalate	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
3,3'-Dichlorobenzidine	nd 0.8 U	nd 0.2 U	nd 0.4 U	nd 1 U	nd 0.02 U	nd 0.02 U	nd 0.02 U	nd 0.1 U	nd 0.1 U	nd 0.2 U
Benzo (a) Anthracene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Chrysene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
bis (2-Ethylhexyl) Phthalate	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	0.001 0.01 J	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Di-n-Octyl Phthalate	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Benzo (b) Fluoranthene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Benzo (k)Fluoranthene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Benzo (a) Pyrene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Indeno (1,2,3-cd) Pyrene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Dibenzo (a,h) Anthracene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Benzo (g,h,i) Perylene	nd 0.4 U	nd 0.1 U	nd 0.2 U	nd 0.5 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	nd 0.1 U
Pyridine	2.5 2	33 25	19 1 E	21 2.5	nd 0.05 U	nd 0.05 U	nd 0.05 U	nd 0.25 U	nd 0.25 U	nd 0.5 U
3-Picoline	13 2	360 100	62 0.2 E	92 25	0.14 0.01	0.073 0.01	0.15 0.01	67 10	10 0.05 E	52 10
1-Methyl-2-pyrrolidinone*	19 2	1100 200	200 0.4 E	200 25	0.005 0.02 J	0.005 0.02 J	0.007 0.01 J	0.4 0.1	0.52 0.1	0.42 0.2
N,N-Dimethylacetamide	11 2			53 25			nd 0.01 U			
Lab Name	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON
Analytical Method	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	1	2	2	1	2	2	1	2	2	2

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

B Compound was found in the blank and the sample

E Concentration exceeds the instrument calibration range and was subsequently diluted

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO,IL

WELL I.D.	MW-10 DUP RERUN	MW-10	RINSE BLANK	RINSE BLANK	RINSE BLANK	TRIP BLANK
SAMPLING DATE	12/21/93	2/14/94	12/21/93	RERUN	2/16/94	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	-	-	-	-
VOLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag
Chloromethane		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Bromomethane		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Vinyl Chloride		0.064 0.1 J	nd 0.01 U		nd 0.01 U	nd 0.01 U
Chloroethane		1.1 0.1	nd 0.01 U		nd 0.01 U	nd 0.01 U
Methylene Chloride		0.057 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Acetone		0.32 0.1	nd 0.01 U		nd 0.01 U	nd 0.01 U
Carbon Disulfide		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1-Dichloroethene		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1-Dichloroethane		0.16 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,2-Dichloroethene (total)		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Chloroform		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,2-Dichloroethane		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
2-Butanone		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
1,1,1-Trichloroethane		0.068 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Carbon Tetrachloride		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Vinyl Acetate		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Bromodichloromethane		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,2-Dichloropropane		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
cis-1,3-Dichloropropene		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Trichloroethene		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Dibromochloromethane		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1,2-Trichloroethane		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Benzene		1.6 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Trans-1,3-Dichloropropene		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Bromoform		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
4-Methyl-2-pentanone		0.2 0.1	nd 0.01 U		nd 0.01 U	nd 0.01 U
2-Hexanone		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Tetrachloroethene		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1,2,2-Tetrachloroethane		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Toluene	,	5.3 0.25	nd 0.005 U		nd 0.005 U	nd 0.005 U
Chlorobenzene		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Ethylbenzene		0.84 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Styrene		0.056 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Total Xylenes		0.91 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Tetrahydrofuran		31 2.5	nd 0.005 U		nd 0.005 U	nd 0.005 U
Trichlorotrifluoroethane		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Chlorodibromomethane						
2-Chloroethylvinylether					,	
Flouorotrichloromethane						
Dichlorodifluoromethane						

TABLE 8: GROUND WATER ANALYTICAL RESULTS SAFETY-KLEEN SITE, CHICAGO,IL

WELL I.D.	MW-10 DUP RERUN	MW-10	RINSE BLANK	RINSE BLANK	RINSE BLANK	TRIP BLANK
SAMPLING DATE	12/21/93	2/14/94	12/21/93	RERUN	2/16/94	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	~		-	-
EMI-VOLATILE ORGANICS (mg/L)						
Phenol	nd 0.1 U	0.067 0.1 J	nd 0.01 U	nd 0.01 U	nd 0.01 U	
bis(2-Chloroethyl) ether	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2-Chlorophenol	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
1,3-Dichlorobenzene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
1,4-Dichlorobenzene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Benzyl alcohol	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
1,2-Dichlorobenzene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2-Methylphenol	0.025 0.1 J	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
bis(2-Chloroisopropyl) ether	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
4-Methylphenol	0.045 0.1 J	0.035 0.1 J	nd 0.01 U	nd 0.01 U	nd 0.01 U	
N-Nitroso-Di-n-propylamine	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Hexachloroethane	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Nitrobenzene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Isophorone	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2-Nitrophenol	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2,4-Dimethylphenol	nd 0.1 U	0.064 0.1 J	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Benzoic acid	nd 0.5 U	nd 0.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	
bis(2-Chloroethoxy)methane	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2,4-Dichlorophenol	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
1,2,4-Trchlorobenzene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	-
Naphthalene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
4-Chloroaniline	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Hexachlorobutadiene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
4-Chloro-3-Methylphenol	nd 0.1 U	0.03 0.1 J	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2-Methylnaphthalene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Hexachlorocyclopentadiene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2,4,6-Trichlorophenol	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2,4,5-Trichlorophenol	nd 0.5 U	nd 0.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	•
2-Chloronaphthalene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2-Nitroaniline	nd 0.5 U	nd 0.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	
Dimethyl Phthalate	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	:
Acenaphthylene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2,6-Dinitrotoluene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
3-Nitroaniline	nd 0.5 U	nd 0.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	
Acenaphthene	nd 0.3 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2,4-Dinitrophenol	nd 0.1 U	nd 0.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	
4-Nitrophenol	nd 0.5 U	nd 0.5 U	nd 0.05 U	nd 0.05 U	nd 0.05 U	
Dibenzofuran	nd 0.5 U	nd 0.3 U	nd 0.03 U	nd 0.03 U	nd 0.01 U	
	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
2,4-Dinitrotoluene	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Diethylphthalate	nd 0.1 U	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
Chlorophenyl-phenylether	1	nd 0.1 U	nd 0.01 U	nd 0.01 U	nd 0.01 U	
nuorene	nd 0.1 U nd 0.5 U	nd 0.1 U	nd 0.01 U	nd 0.05 U	nd 0.05 U	

TABLE 9: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	P1	P2	Р3	P4	MW-1	MW-1	MW-1 RERUN	MW-1	MW-2
SAMPLING DATE	5/9/91	5/9/91	5/9/91	5/9/91	11/7/91	12/21/93	12/21/93	2/15/94	11/7/91
SAMPLING DEPTH/INTERVAL (ft)					4-9	4-9	4-9	4-9	5-10
VOLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag
Chloromethane	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.05	nd 0.1 U	\ 	nd 0.1 U	nd 0.2
Bromomethane	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.05	nd 0.1 U		nd 0.1 U	nd 0.2
Vinyl Chloride	nd 5	nd 0.5L	nd 0.001	nd 0.01	1.1 0.05	0.07 0.1 J		0.25 0.1	0.26 0.2
Chloroethane	nd 10	nd 1L	0.0044	0.024	1.9 1	1 0.1		0.95 0.1	nd 0.2
Methylene Chloride	9.5	nd 0.5L	0.0019	0.012	0.15 0.025	nd 0.05 U		nd 0.05 U	12 0.5
Acetone					0.13 0.05	nd 0.1 U		nd 0.1 U	4.7 1
Carbon Disulfide					nd 0.025	nd 0.05 U		nd 0.05 U	0.75 0.1
1,1-Dichloroethene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	0.26 0.1
1,1-Dichloroethane	nd 5	nd 0.5L	0.023	0.096	0.1 0.025	nd 0.05 U		0.036 0.05 J	0.46 0.1
1,2-Dichloroethene (total)	nd 5	nd 0.5L	0.0048	0.021	1.1 0.025	0.16 0.05	•	0.1 0.05	3.9 0.1
Chloroform	50	nd 0.5L	0.0011	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	54 10
1.2-Dichloroethane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U	i	nd 0.05 U	nd 0.1
2-Butanone					nd 0.05	nd 0.1 U		nd 0.1 U	0.7 0.2
1,1,1-Trichloroethane	nd 10	nd 1L	nd 0.002	0.029	0.016 0.025 J	nd 0.05 U		nd 0.05 U	2.5 0.1
Carbon Tetrachloride	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	0.98 0.1
Vinyl Acetate	.,,,				nd 0.05	nd 0.1 U		nd 0.1 U	nd 0.2
Bromodichloromethane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
1,2-Dichloropropane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U	,	nd 0.05 U	0.079 0.1 J
cis-1,3-Dichloropropene	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Trichloroethene	nd 10	nd 1L	0.0032	0.028	0.057 0.025	0.28 0.05		nd 0.05 U	16 0.5
Dibromochloromethane	""		0.000		nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
1,1,2-Trichloroethane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Benzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	0.48 0.025	0.42 0.05		0.31 0.05	8.1 0.5
Trans-1,3-Dichloropropene	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Bromoform	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
4-Methyl-2-pentanone	110 3	110 0.52	114 0.001	1.4 0.0	0.039 0.05 J	nd 0.1 U		nd 0.1 U	nd 0.2
•					nd 0.05	nd 0.1 U		nd 0.1 U	nd 0.2
2-Hexanone Tetrachloroethene	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	0.28 0.05		nd 0.05 U	0.44 0.1
•	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
1,1,2,2-Tetrachloroethane	470	nd 0.5L	nd 0.002	nd 0.02	0.53 0.025	0.38 0.05		0.15 0.05	300 10
Toluene		l .	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Chlorobenzene	nd 5	nd 0.5L	1	nd 0.01	nd 0.025	0.04 0.05 J		nd 0.05 U	0.3 0.1
Ethylbenzene	nd 5	nd 0.5L	nd 0.001	110 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Styrene			-40.003	nd 0.03	nd 0.025	0.14 0.05		nd 0.05 U	2 0.1
Total Xylenes	nd 15	nd 1.5L	nd 0.003	110 0.03	2.1 0.5	9.2 0.5		9.5 2.5	nd 0.1
Tetrahydrofuran					nd 0.05	nd 0.1 U		nd 0.1 U	4.2 1
Trichlorotrifluoroethane				1004	na 0.05	110 0.1		110 0.1	1.2
Chlorodibromomethane	nd 5	nd 0.5L	nd 0.001	nd 0.01					
2-Chloroethylvinylether	nd 25	nd 2.5L	nd 0.005	nd 0.05				,	
Flouorotrichloromethane	nd 10	nd 1L	nd 0.002	nd 0.02					
ichlorodifluoromethane	nd 10	nd 1L	nd 0.002	nd 0.02	1			1	1

TABLE 9: GROUND WATER ANALYTICAL RESULTS - QUALIFIED DATA

WELL I.D.	MW-2	MW-2 RERUN	MW-2	MW-2 DUP	MW-3	MW-3 Dup?	MW-3	MW-3 RERUN	MW-3	
SAMPLING DATE	12/21/93	12/21/93	2/15/94	2/15/94	11/7/91	11/7/91	12/21/93	12/21/93	2/16/94	
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	?	5-10	5-10	5-10	
VOLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL	Flag
Chloromethane	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
Bromomethane	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
Vinyl Chloride	0.5 0.1		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
Chloroethane	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
Methylene Chloride	12 0.5		15 5	15 5	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Acetone	0.98 0.1 BJ		nd 10 U	nd 10 U	0.23 0.1	0.17 0.1	0.19 0.1 BJ		1.7 0.2	
Carbon Disulfide	0.93 0.05		1.5 5 J	1.6 5 J	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
1,1-Dichloroethene	0.31 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U	•	nd 0.1	U
1,1-Dichloroethane	0.62 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
1,2-Dichloroethene (total)	7.5 2.5 J		7.7 5	5.6 5	nd 0.05	nd 0.05	0.027 0.05 J		nd 0.1	U
Chloroform	62 2.5. J		95 5	100 5	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	Ü
1,2-Dichloroethane	0.13 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
2-Butanone	0.16 0.1		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
1,1,1-Trichloroethane	1.8 0.05		1.4 5 J	1.5 5 J	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Carbon Tetrachloride	0.066 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Vinyl Acetate	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
Bromodichioromethane	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
1,2-Dichloropropane	0.17 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
cis-1,3-Dichloropropene	nd 0.05 U	`	nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Trichloroethene	15 0.5		19 5	19 5	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Dibromochloromethane	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
1,1,2-Trichloroethane	0.075 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Benzene	15 0.5		21 5	22 5	7 0.05	5.8 0.05	3.5 0.5		1.4 0.1	
Trans-1,3-Dichloropropene	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Bromoform	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
4-Methyl-2-pentanone	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		0.39 0.2	
2-Hexanone	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
Tetrachloroethene	0.54 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
1,1,2,2-Tetrachloroethane	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Toluene	230 5 J		140 5	140 5	1.8 0.05	1.2 0.05	0.31 0.05		0.42 0.1	
Chlorobenzene	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Ethylbenzene	0.44 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Styrene	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Total Xylenes	2.7 0.05		2.8 5	2.6 5 J	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1	U
Tetrahydrofuran	nd 0.05 U		nd 5 U	nd 5 U	3 0.05	2.3 0.05	13 0.5		21 1	
Trichlorotrifluoroethane	nd 0.1 U		1.3 10 J	1.5 10 J	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2	U
Chlorodibromomethane										
2-Chloroethylvinylether										
Flouorotrichloromethane										
ichlorodifluoromethane	:									

TABLE 9: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	P1	P2	P3	P4	MW-1	MW-1	MW-1 RERUN	MW-1	MW-2
SAMPLING DATE	5/9/91	5/9/91	5/9/91	5/9/91	11/7/91	12/21/93	12/21/93	2/15/94	11/7/91
SAMPLING DEPTH/INTERVAL (ft)					4-9	4-9	4- <u>9</u>	4-9	5-10
VOLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag
Chloromethane	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.05	nd 0.1 U		nd 0.1 U	nd 0.2
Bromomethane	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.05	nd 0.1 U		nd 0.1 U	nd 0.2
Vinyl Chloride	nd 5	nd 0.5L	nd 0.001	nd 0.01	1.1 0.05	0.07 0.1 J	•	0.25 0.1	0.26 0.2
Chloroethane	nd 10	nd 1L	0.0044	0.024	1.9 1	1 0.1		0.95 0.1	nd 0.2
Methylene Chloride	9.5	nd 0.5L	0.0019	0.012	0.15 0.025	nd 0.05 U		nd 0.05 U	12 0.5
Acetone	,				0.13 0.05	nd 0.1 U		nd 0.1 U	4.7 1
Carbon Disulfide					nd 0.025	nd 0.05 U		nd 0.05 U	0.75 0.1
1,1-Dichloroethene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	0.26 0.1
1,1-Dichloroethane	nd 5	nd 0.5L	0.023	0.096	0.1 0.025	nd 0.05 U		0.036 0.05 J	0.46 0.1
1,2-Dichloroethene (total)	nd 5	nd 0.5L	0.0048	0.021	1.1 0.025	0.16 0.05		0.1 0.05	3.9 0.1
Chloroform	50	nd 0.5L	0.0011	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	54 10
1,2-Dichloroethane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
2-Butanone					nd 0.05	nd 0.1 U	•	nd 0.1 U	0.7 0.2
1,1,1-Trichloroethane	nd 10	nd 1L	nd 0.002	0.029	0.016 0.025 J	nd 0.05 U		nd 0.05 U	2.5 0.1
Carbon Tetrachloride	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	0.98 0.1
Vinyl Acetate					nd 0.05	nd 0.1 U		nd 0.1 U	nd 0.2
Bromodichloromethane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
1,2-Dichloropropane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	0.079 0.1 J
cis-1,3-Dichloropropene	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Trichloroethene	nd 10	nd 1L	0.0032	0.028	0.057 0.025	0.28 0.05		nd 0.05 U	16 0.5
Dibromochloromethane					nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
1,1,2-Trichloroethane	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Benzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	0.48 0.025	0.42 0.05		0.31 0.05	8.1 0.5
Trans-1,3-Dichloropropene	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Bromoform	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
4-Methyl-2-pentanone					0.039 0.05 J	nd 0.1 U		nd 0.1 U	nd 0.2
2-Hexanone					nd 0.05	nd 0.1 U		nd 0.1 U	nd 0.2
Tetrachloroethene	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	0.28 0.05	•	nd 0.05 U	0.44 0.1
1,1,2,2-Tetrachloroethane	nd 10	nd 1L	nd 0.002	nd 0.02	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Toluene	470	nd 0.5L	nd 0.001	nd 0.01	0.53 0.025	0.38 0.05		0.15 0.05	300 10
Chlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Ethylbenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.025	0.04 0.05 J		nd 0.05 U	0.3 0.1
Styrene					nd 0.025	nd 0.05 U		nd 0.05 U	nd 0.1
Total Xylenes	nd 15	nd 1.5L	nd 0.003	nd 0.03	nd 0.025	0.14 0.05	·	nd 0.05 U	2 0.1
Tetrahydrofuran					2.1 0.5	9.2 0.5		9.5 2.5	nd 0.1
Trichlorotrifluoroethane					nd 0.05	nd 0.1 U		nd 0.1 U	4.2 1
Chlorodibromomethane	nd 5	nd 0.5L	nd 0.001	nd 0.01					
2-Chloroethylvinylether	nd 25	nd 2.5L	nd 0.005	nd 0.05			,		
Flouorotrichloromethane	nd 10	nd 1L	nd 0.002	nd 0.02					
ichlorodifluoromethane	nd 10	nd 1L	nd 0.002	nd 0.02					

TABLE 9: GROUND WATER ANALYTICAL RESULTS

- QUALIFIED DATA (1993, 1994 data only)

WELL I.D.	P1	P2	P3	P4	MW-1	MW-1	MW-1 RERUN	MW-1	MW-2
SAMPLING DATE	5/9/91	5/9/91	5/9/91	5/9/91	11/7/91	12/21/93	12/21/93	2/15/94	11/7/91
SAMPLING DEPTH/INTERVAL (ft)					4-9	4-9	4-9	4-9	5-10
SEMI-VOLATILE ORGANICS (mg/L)									
Phenol					0.023 0.06 J	0.012 0.05 J	0.014 0.11 J	nd 0.1 U	nd 2
bis(2-Chloroethyl) ether	i				nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
2-Chlorophenol					nd 0.06	nd 0.05 U	nd 0.11 UJ	nd 0.1 U	nd 2
1,3-Dichlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
1,4-Dichlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Benzyl alcohol				1	nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	0.45 2
1,2-Dichlorobenzene	nd 5	nd 0.5L	nd 0.001	nd 0.01	nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
2-Methylphenol		1.00		<u> </u>	0.046 0.06 J	0.006 0.05 J	nd 0.11 UJ	nd 0.1 U	0.49 2 J
bis(2-Chloroisopropyl) ether					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
4-Methylphenol					0.014 0.06 J	nd 0.05 U	0.016 0.11 J	nd 0.1 U	nd 2
N-Nitroso-Di-n-propylamine					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Hexachloroethane				i	nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Nitrobenzene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Isophorone				İ	nd 0.06	nd 0.05 U	nd 0.11 UJ	nd 0.1 U	nd 2
2-Nitrophenol		·			nd 0.06	nd 0.05 U	nd 0.11 UJ	nd 0.1 U	nd 2
2,4-Dimethylphenol					nd 0.3	nd 0.25 U	nd 0.55 UJ	nd 0.5 U	1.5 9.8 J
Benzoic acid					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
bis(2-Chloroethoxy)methane					nd 0.06	nd 0.05 U	nd 0.11 UJ	nd 0.1 U	nd 2
2,4-Dichlorophenol					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
1,2,4-Trchlorobenzene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Naphthalene		· [nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
4-Chloroaniline					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Hexachlorobutadiene					nd 0.06	nd 0.05 U	nd 0.11 UJ	nd 0.1 U	nd 2
4-Chloro-3-Methylphenol					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
2-Methylnaphthalene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Hexachlorocyclopentadiene					nd 0.06	nd 0.05 U	nd 0.11 UJ	nd 0.1 U	nd 2
2,4,6-Trichlorophenol					nd 0.00	nd 0.25 U	nd 0.55 UJ	nd 0.5 U	nd 9.8
2,4,5-Trichlorophenol					nd 0.06	nd 0.25 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
2-Chloronaphthalene					4	nd 0.25 UJ	nd 0.11 03	nd 0.1	nd 9.8
2-Nitroaniline					nd 0.3	nd 0.25 UJ	nd 0.33 03	nd 0.3 U	nd 2
Dimethyl Phthalate					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Acenaphthylene				· ·	nd 0.06			nd 0.1 U	nd 2
2,6-Dinitrotoluene					nd 0.06	nd 0.05 UJ nd 0.25 UJ		nd 0.1	nd 9.8
3-Nitroaniline					nd 0.3			nd 0.5 U	nd 2
Acenaphthene	:				nd 0.06	nd 0.05 UJ			nd 9.8
2,4-Dinitrophenol					nd 0.3	nd 0.25 U	nd 0.55 UJ	nd 0.5 U	nd 9.8
4-Nitrophenol					nd 0.3	nd 0.25 U	nd 0.55 UJ	nd 0.5 U	nd 9.6
Dibenzofuran	1				nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	l .
2,4-Dinitrotoluene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Diethylphthalate					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
4-Chlorophenyl-phenylether					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Fluorene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
4-Nitroaniline				1	nd 0.3	nd 0.25 UJ	nd 0.55 UJ	nd 0.5 U	nd 9.8

TABLE 9: GROUND WATER ANALYTICAL RESULTS

- QUALIFIED DATA (1993, 1994 data only)

SAFETY-KLEEN SITE, CHICAGO, IL

WELL I.D.	P1	P2	P3	P4	MW-1	MW-1	MW-1 RERUN	MW-1	MW-2
SAMPLING DATE	5/9/91	5/9/91	5/9/91	5/9/91	11/7/91	12/21/93	12/21/93	2/15/94	11/7/91
SAMPLING DEPTH/INTERVAL (ft)					4-9	4-9	4-9	4-9	5-10
SEMI-VOLATILE ORGANICS (mg/L)									
4,6-Dinitro-2-Methylphenol					nd 0.3	nd 0.25 U	nd 0.55 UJ	nd 0.5 U	nd 9.8
N-Nitrosodiphenylamine (1)					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
4-Bromophenyl-phenylether			1		nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Hexachlorobenzene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Pentachlorophenol					nd 0.3	nd 0.25 U	nd 0.55 UJ	nd 0.5 U	nd 9.8
Phenanthrene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Anthracene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Di-n-Butylphthalate					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Fluoranthene		1			nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Pyrene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Butylbenzylphthalate					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
3,3'-Dichlorobenzidine					nd 0.12	nd 0.1 UJ	nd 0.22 UJ	nd 0.2 U	nd 3.9
Benzo (a) Anthracene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Chrysene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
bis (2-Ethylhexyl) Phthalate					nd 0.06	nd 0.05 UJ	0.033 0.11 J	nd 0.1 U	nd 2
Di-n-Octyl Phthalate					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Benzo (b) Fluoranthene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Benzo (k.) Fluoranthene				!	nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Benzo (a) Pyrene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Indeno (1,2,3-cd) Pyrene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Dibenzo (a,h) Anthracene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Benzo (g,h,i) Perylene					nd 0.06	nd 0.05 UJ	nd 0.11 UJ	nd 0.1 U	nd 2
Pyridine					0.053 0.06 J	nd 0.25 UJ	nd 0.55 UJ	nd 0.5 U	2.4 2
3-Picoline					2.7 0.3	5.4 0.5 J	3.6 0.11 E	2.3 0.2	290 39
1-Methyl-2-pyrrolidinone*					0.11	0.14 0.1 J	0.18 0.22 J	0.18 0.1	12
N,N-Dimethylacetamide					0.18 0.06			0.043 0.1 J	850 39
Lab Name	RMT	RMT	RMT	RMT	WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	WESTON
Analytical Method	8010&	8010&	8010&	8010&	EPA	EPA	EPA	EPA	EPA
-	8020	8020	8020	8020	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	1	1	1	1	1	2	2	1	1

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

- U Compound was not detected at or above the reporting limit
- J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)
- UJ Analyte was not detected above the reported sample detection or quantitation limit but the limit is an estimated value.
- B Compound was found in the blank and the sample
- BJ Compound was found in the blank and the sample and the result is an estimated value
- E Concentration exceeds the instrument calibration range and was subsequently diluted

Flag data qualifier

J Red color indicates the corrected data qualifier

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

TABLE 9: GROUND WATER ANALYTICAL RESULTS - QUALIFIED DATA

WELL I.D.	MW-2	MW-2 RERUN	MW-2	MW-2 DUP	MW-3	MW-3 Dup?	MW-3	MW-3 RERUN	MW-3	
SAMPLING DATE	12/21/93	12/21/93	2/15/94	2/15/94	11/7/91	11/7/91	12/21/93	12/21/93	2/16/94	
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	?	5-10	5-10	5-10	
VOLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag		ag
Chloromethane	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2 U	
Bromomethane	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2 U	
Vinyl Chloride	0.5 0.1		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2 U	
Chloroethane	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2 U	
Methylene Chloride	12 0.5		15 5	15 5	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
Acetone	0.98 0.1 BJ		nd 10 U	nd 10 U	0.23 0.1	0.17 0.1	0.19 0.1 BJ		1.7 0.2	
Carbon Disulfide	0.93 0.05		1.5 5 J	1.6 5 J	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
1,1-Dichloroethene	0.31 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
1,1-Dichloroethane	0.62 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
1,2-Dichloroethene (total)	7.5 2.5 J	:	7.7 5	5.6 5	nd 0.05	nd 0.05	0.027 0.05 J		nd 0.1 U	
Chloroform	62 2.5 J		95 5	100 5	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
1,2-Dichloroethane	0.13 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
2-Butanone	0.16 0.1		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2 U	
1,1,1-Trichloroethane	1.8 0.05		1.4 5 J	1.5 5 J	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
Carbon Tetrachloride	0.066 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
Vinyl Acetate	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2 U	
Bromodichloromethane	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
1,2-Dichloropropane	0.17 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
cis-1,3-Dichloropropene	nd 0.05 U	1	nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
Trichloroethene	15 0.5		19 5	19 5	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
Dibromochloromethane	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
1,1,2-Trichloroethane	0.075 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1)
Benzene	15 0.5		21 5	22 5	7 0.05	5.8 0.05	3.5 0.5		1.4 0.1	
Trans-1,3-Dichloropropene	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 U	
Bromoform	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 L	j
4-Methyl-2-pentanone	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U		0.39 0.2	
2-Hexanone	nd 0.1 U		nd 10 U	nd 10 U	nd 0.1	nd 0.1	nd 0.1 U			j
Tetrachloroethene	0.54 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 L	
1,1,2,2-Tetrachloroethane	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 L	J
Toluene	230 5 J		140 5	140 5	1.8 0.05	1.2 0.05	0.31 0.05		0.42 0.1	
Chlorobenzene	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U		nd 0.1 L	
Ethylbenzene	0.44 0.05		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U			J
Styrene	nd 0.05 U		nd 5 U	nd 5 U	nd 0.05	nd 0.05	nd 0.05 U			IJ
Total Xylenes	2.7 0.05		2.8 5	2.6 5 J	nd 0.05	nd 0.05	nd 0.05 U			J
Tetrahydrofuran	nd 0.05 U		nd 5 U	nd 5 U	3 0.05	2.3 0.05	13 0.5		21 1	
Trichlorotrifluoroethane	nd 0.1 U		1.3 10 J	1.5 10 J	nd 0.1	nd 0.1	nd 0.1 U		nd 0.2 l	U
Chlorodibromomethane										
2-Chloroethylvinylether										
Flouorotrichloromethane										
ichlorodifluoromethane										

TABLE 9: GROUND WATER ANALYTICAL RESULTS - QUALIFIED DATA

WELL I.D.	MW-2	MW-2 RERUN	MW-2	MW-2 DUP	MW-3	MW-3 Dup?	MW-3	MW-3 RERUN	MW-3
SAMPLING DATE	12/21/93	12/21/93	2/15/94	2/15/94	11/7/91	11/7/91	12/21/93	12/21/93	2/16/94
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	<i>5-10</i>	?	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)									
Phenol	nd 1 U	nd 1 UJ	nd 3.2 U	nd 2 U	0.022 0.076 J	0.024 0.088 J	nd 0.1 U	nd 0.1 UJ	nd 0.2 U
bis(2-Chloroethyl) ether	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
2-Chlorophenol	nd 1 U	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 UJ	nd 0.2 U
1,3-Dichlorobenzene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
1,4-Dichlorobenzene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Benzyl alcohol	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
1,2-Dichlorobenzene	0.15 1 J	0.14 1 J	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
2-Methylphenol	0.22 1 J	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 UJ	0.089 0.2 J
bis(2-Chloroisopropyl) ether	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
4-Methylphenol	0.5 1 J	0.52 1 J	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	0.016 0.1 J	nd 0.1 UJ	0.59 0.2
N-Nitroso-Di-n-propylamine	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Hexachloroethane	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Nitrobenzene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Isophorone	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
2-Nitrophenol	nd 1 U	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 UJ	nd 0.2 U
2,4-Dimethylphenol	nd 1 U	nd 1 UJ	nd 3.2 U	nd 2 U	0.039 0.076 J	0.037 0.088 J	0.02 0.1 J	0.019 0.1 J	nd 0.2 U
Benzoic acid	1.5 5 J	2.1 5 J	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 UJ	nd 1 U
bis(2-Chloroethoxy)methane	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
2,4-Dichlorophenol	nd 1 U	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U	nd 0.1 UJ	nd 0.2 U
1,2,4-Trchlorobenzene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Naphthalene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	0.05 0.076 J	0.055 0.088 J	0.03 0.1 J	0.032 0.1 J	nd 0.2 U
4-Chloroaniline	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ nd 0.1 UJ	nd 0.2 U nd 0.2 U
Hexachlorobutadiene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ nd 0.1 U	nd 0.1 UJ nd 0.1 UJ	nd 0.2 U
4-Chloro-3-Methylphenol	nd 1 U	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 U nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
2-Methylnaphthalene	nd 1 UJ		nd 3.2 U	nd 2 U	0.007 0.076 J	0.008 0.088 J		nd 0.1 UJ	nd 0.2 U
Hexachlorocyclopentadiene	nd 1 UJ		nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ nd 0.1 U	nd 0.1 UJ	nd 0.2 U
2,4,6-Trichlorophenol	nd 1 U	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076 nd 0.38	nd 0.088 nd 0.44	nd 0.1 U	nd 0.5 UJ	nd 1 U
2,4,5-Trichlorophenol	nd 5 U	nd 5 UJ	nd 16 U	nd 10 U		nd 0.44	nd 0.5 UJ	nd 0.1 UJ	nd 0.2 U
2-Chloronaphthalene	nd 1 UJ	4		nd 2 U nd 10 U	nd 0.076 nd 0.38	nd 0.088	nd 0.1 03	nd 0.5 UJ	nd 1 U
2-Nitroaniline	1		nd 16 U		nd 0.076	nd 0.44	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Dimethyl Phthalate	nd 1 UJ	.	nd 3.2 U	nd 2 U nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Acenaphthylene	nd 1 UJ		nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
2,6-Dinitrotoluene	nd 1 UJ nd 5 UJ		nd 3.2 U nd 16 U	nd 10 U	nd 0.38	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 1 U
3-Nitroaniline	1		nd 3.2 U	nd 10 U	0.018 0.076 J	0.02 0.088 J	0.01 0.1 J	0.01 0.1 J	nd 0.2 U
Acenaphthene	1	nd 1 UJ nd 5 UJ	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 UJ	nd 1 U
2,4-Dinitrophenol	nd 5 U		nd 16 U		nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 UJ	nd 1 U
4-Nitrophenol	nd 5 U		nd 16 U	nd 10 U	0.009 0.076 J	0.01 0.088 J	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Dibenzofuran	1		nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
2,4-Dinitrotoluene	1 "- 1		nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Diethylphthalate			nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ.	nd 0.1 UJ	nd 0.2 U
4-Chlorophenyl-phenylether			nd 3.2 U	nd 2 U	0.012 0.076 J	0.056 0.088 J	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Fluorene	1 ''" '			l .	nd 0.38	nd 0.44	nd 0.1 UJ	nd 0.1 UJ	nd 1 U
4-Nitroaniline	nd 5 UJ	nd 5 UJ	nd 16 U	nd 10 U	110 0.38	110 0.44	110 0.5 03	110 0.5 05	i iid i

TABLE 9: GROUND WATER ANALYTICAL RESULTS - QUALIFIED DATA

SAFETY-KLEEN SITE, CHICAGO, IL

WELL I.D.	MW-2	MW-2 RERUN	MW-2	MW-2 DUP	MW-3	MW-3 Dup?	MW-3	MW-3 RERUN	MW-3
SAMPLING DATE	12/21/93	12/21/93	2/15/94	2/15/94	11/7/91	11/7/91	12/21/93	12/21/93	2/16/94
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	?	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)									1
4,6-Dinitro-2-Methylphenol	nd 5 U	nd 5 UJ	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 UJ	nd 1 U
N-Nitrosodiphenylamine (1)	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
4-Bromophenyl-phenylether	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Hexachlorobenzene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Pentachlorophenol	nd 5 U	nd 5 UJ	nd 16 U	nd 10 U	nd 0.38	nd 0.44	nd 0.5 U	nd 0.5 UJ	nd 1 U
Phenanthrene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	0.011 0.076 J	0.013 0.088 J	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Anthracene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Di-n-Butylphthalate	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Fluoranthene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Pyrene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0,088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Butylbenzylphthalate	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
3,3'-Dichlorobenzidine	nd 2 UJ	nd 2 UJ	nd 6.4 U	nd 4 U	nd 0.15	nd 0.18	nd 0.2 UJ	nd 0.2 ՍJ	nd 0.4 U
Benzo (a) Anthracene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Chrysene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
bis (2-Ethylhexyl) Phthalate	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Di-n-Octyl Phthalate	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Benzo (b) Fluoranthene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Benzo (k.) Fluoranthene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Benzo (a) Pyrene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Indeno (1,2,3-cd) Pyrene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Dibenzo (a,h) Anthracene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Benzo (g,h,i) Perylene	nd 1 UJ	nd 1 UJ	nd 3.2 U	nd 2 U	nd 0.076	nd 0.088	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 U
Pyridine	nd 5 UJ	nd 5 UJ	6.5 3.2	2.5 2	0.064 0.076 J	0.071 0.088 J	nd 0.5 UJ	nd 0.5 UJ	1.3 1
3-Picoline	670 50 J	230 1 E	190 160	160 160	4.6 0.38	4.9 0.44	9.9 1 J	4.6 0.1 E	530 100
1-Methyl-2-pyrrolidinone*	1100 100 J	160 2 E	74 160 J	61 160 J	0.16	0.2	1.3 0.2 J	1.4 0.2 J	140 10
N,N-Dimethylacetamide			1800 160	1500 160	22 1.5	2.7 1.8			21000 2000
Lab Name	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	WESTON	WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON
Analytical Method	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	2	2	1	1	1	1	2	2	1

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

- U Compound was not detected at or above the reporting limit
- J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)
- UJ Analyte was not detected above the reported sample detection or quantitation limit but the limit is an estimated value.
- B Compound was found in the blank and the sample
- BJ Compound was found in the blank and the sample and the result is an estimated value
- E Concentration exceeds the instrument calibration range and was subsequently diluted

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

J Red color indicates the corrected data qualifier

TABLE 9: GROUND WATER ANALYTICAL RESULTS

- QUALIFIED DATA (1993, 1994 data only) SAFETY-KLEEN SITE, CHICAGO, IL

WELL I.D.	MW-4	MW-4 RERUN	MW-4	MW-5	MW-5 RERUN	MW-5		MW-6		MW-6 RERUN	MW-7	
SAMPLING DATE	12/21/93	12/21/93	2/15/94	12/20/93	12/20/93	2/15/94		12/21/93		12/21/93	12/21/93	3
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10		5-10		5-10	5-10	
VOLATILE ORGANICS (mg/L)	RL FI	ag RL Flag	1	RL Flag	RL Flag	RL i	lag	RL	Flag	RL Flag	RL	Flag
Chloromethane	0.12 0.1		0.11 0.05	nd 0.01 U		nd 0.01	J	nd 0.1	U		nd 1	U
Bromomethane	nd 0.1 U		nd 0.05 U	nd 0.01 U		nd 0.01)	nd 0.1	U		nd 1	U
Vinyl Chloride	0.1 0.1		0.085 0.05	nd 0.01 U		nd 0.01	J	nd 0.1	U		1.9 1	
Chloroethane	nd 0.1 U		0.038 0.05 J	nd 0.01 U		nd 0.01)	nd 0.1	U		6.1 1	
Methylene Chloride	1.8 0.05		1.5 0.25	nd 0.005 U			ا	nd 0.05	U		0.51 0.5	
Acetone	2.8 1 B	J	nd 0.05 U	nd 0.01 U		nd 0.01	J	nd 0.1	U		5.6 5	BJ
Carbon Disulfide	nd 0.05 L		nd 0.025 U	nd 0.005 U		nd 0.005)	nd 0.05	U		nd 0.5	U
1,1-Dichloroethene	nd 0.05 l		nd 0.025 U	nd 0.005 U		nd 0.005	J	nd 0.05	U	•	nd 0.5	U
1,1-Dichloroethane	nd 0.05 L		0.018 0.025 J	0.016 0.005		0.004 0.005	J	nd 0.05	U		4.6 0.5	
1,2-Dichloroethene (total)	0.068 0.05		0.17 0.025	nd 0.005 U		nd 0.005	J [nd 0.05	U		3 0.5	
Chloroform	1.2 0.05		0.4 0.025	nd 0.005 U		nd 0.005	J	nd 0.05	U		nd 0.5	U
1,2-Dichloroethane	nd 0.05 L	· ·	nd 0.025 U	nd 0.005 U		nd 0.005	J	nd 0.05	U		nd 0.5	Ų
2-Butanone	0.21 0.1		0.17 0.05	nd 0.01 U		nd 0.01	J	nd 0.1	U		1.7 1	
1,1,1-Trichloroethane	nd 0.05 L		nd 0.025 U	nd 0.005 U		nd 0.005	J	nd 0.05	U		nd 0.5	U
Carbon Tetrachloride	nd 0.05 L		nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
Vinyl Acetate	nd 0.1 L		nd 0.05 U	nd 0.01 U		nd 0.01	U	nd 0.1	U	,	nd 1	U
Bromodichloromethane	nd 0.05 U	!	nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
1,2-Dichloropropane	nd 0.05 U		0.012 0.025 J	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
cis-1,3-Dichloropropene	nd 0.05 l		nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
Trichloroethene	0.026 0.05 J		nd 0.025 U	nd 0.005 U		nd 0.005	υ	nd 0.05	U		nd 0.5	U
Dibromochloromethane	nd 0.05 l		nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
1,1,2-Trichloroethane	nd 0.05 l		nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
Benzene	5.5 0.5		3.2 0.25	0.003 0.005 J		0.003 0.005	J	nd 0.05	U		4.2 0.5	
Trans-1,3-Dichloropropene	nd 0.05 l		nd 0.025 U	nd 0.005 U		nd 0.005	υ	nd 0.05	U		nd 0.5	U
Bromoform	nd 0.05 l		nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
4-Methyl-2-pentanone	0.83 0.1		0.7 0.5	nd 0.01 U		nd 0.01	U	nd 0.1	U		6.7 1	
2-Hexanone	nd 0.1 U	1	nd 0.05 U	nd 0.01 U		nd 0.01	υ	nd 0.1	U		nd 1	U
Tetrachloroethene	nd 0.05 l	1	nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
1,1,2,2-Tetrachloroethane	nd 0.05 l	I	nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
Toluene	0.8 0.05		0.71 0.025	nd 0.005 U		nd 0.005	U	nd 0.05	U		13 2.5	J
Chlorobenzene	nd 0.05 l		nd 0.025 U	nd 0.005 U		nd 0.005	U	nd 0.05	U		nd 0.5	U
Ethylbenzene	0.11 0.05		0.077 0.025	nd 0.005 U		nd 0.005	U	nd 0.05	U		3.7 0.5	
Styrene	nd 0.05 l	1	nd 0.025 U	nd 0.005 U		nd 0.005	υ	nd 0.05	U		nd 0.5	U
Total Xylenes	0.073 0.05		0.047 0.025	nd 0.005 U		nd 0.005	U	nd 0.05	U		2.9 0.5	
Tetrahydrofuran	20 0.5		23 0.25	0.015 0.005		0.096 0.005		6 0.25			22 2.5	J
Trichlorotrifluoroethane	nd 0.1 l		nd 0.05 U	nd 0.01 U		nd 0.01	υ	nd 0.1	U		nd 1	U
Chlorodibromomethane												
2-Chloroethylvinylether											1	
Flouorotrichloromethane												•
Dichlorodifluoromethane												

TABLE 9: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-4	MW-4 RERUN	MW-4	MW-5	MW-5 RERUN	MW-5	MW-6	MW-6 RERUN	MW-7
SAMPLING DATE	12/21/93	12/21/93	2/15/94	12/20/93	12/20/93	2/15/94	12/21/93	12/21/93	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)									
Phenol	nd 1.2 U	nd 1UJ	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	nd 0.02 UJ	nd 0.05 U
bis(2-Chloroethyl) ether	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
2-Chlorophenol	nd 1.2 U	nd 1 UJ	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	nd 0.02 UJ	nd 0.05 U
1,3-Dichlorobenzene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
1,4-Dichlorobenzene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Benzyl alcohol	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
1,2-Dichlorobenzene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
2-Methylphenol	nd 1.2 U	nd 1 UJ	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	nd 0.02 UJ	nd 0.05 U
bis(2-Chloroisopropyl) ether	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
4-Methylphenol	0.36 1.2 J	0.33 1 J	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	nd 0.02 UJ	0.064 0.05 J
N-Nitroso-Di-n-propylamine	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Hexachloroethane	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Nitrobenzene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0:02 UJ	nd 0.02 UJ	nd 0.05 UJ nd 0.05 UJ
Isophorone	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ nd 0.05 U
2-Nitrophenol	nd 1.2 U	nd 1 UJ	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	nd 0.02 UJ nd 0.02 UJ	0.045 0.05 J
2,4-Dimethylphenol	nd 1.2 U	nd 1 UJ	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	1	nd 0.25 U
Benzoic acid	nd 6.2 U	nd 5 UJ	nd 25 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U	nd 0.1 U	nd 0.1 UJ nd 0.02 UJ	nd 0.05 UJ
bis(2-Chloroethoxy)methane	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 U
2,4-Dichlorophenol	nd 1.2 U	nd 1 UJ	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U nd 0.01 U	nd 0.02 U nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
1,2,4-Trchlorobenzene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Naphthalene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
4-Chloroaniline	nd 1.2 UJ	nd 1 UJ nd 1 UJ	nd 5 U	nd 0.01 UJ nd 0.01 UJ	nd 0.01 UJ nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Hexachlorobutadiene	nd 1.2 UJ nd 1.2 U		nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	nd 0.02 UJ	nd 0.05 U
4-Chloro-3-Methylphenol	nd 1.2 UJ		nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
2-Methylnaphthalene	nd 1.2 UJ	nd 1 UJ nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	
Hexachlorocyclopentadiene	nd 1.2 U	nd 1 UJ	nd 5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U	nd 0.02 U	nd 0.02 UJ	
2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	nd 6.2 U	nd 5 UJ	nd 25 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U	nd 0.1 U	nd 0.1 UJ	
2-Chloronaphthalene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	
2-Nitroaniline	nd 6.2 UJ	nd 5 UJ	nd 25 U	nd 0.05 UJ	nd 0.05 UJ	nd 0.05 U	nd 0.1 UJ	nd 0.1 UJ	
Dimethyl Phthalate	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Acenaphthylene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
2,6-Dinitrotoluene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
3-Nitroaniline	nd 6.2 UJ	nd 5 UJ	nd 25 U	nd 0.05 UJ	nd 0.05 UJ	nd 0.05 U	nd 0.1 UJ	nd 0.1 UJ	nd 0.25 UJ
Acenaphthene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
2,4-Dinitrophenol	nd 6.2 U	nd 5 UJ	nd 25 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U	nd 0.1 U	nd 0.1 UJ	nd 0.25 U
4-Nitrophenol	nd 6.2 U	nd 5 UJ	nd 25 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U	nd 0.1 U	nd 0.1 UJ	nd 0.25 U
Dibenzofuran	nd 1.2 UJ	1	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
2,4-Dinitrotoluene	nd 1.2 UJ		nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
ethylphthalate	nd 1.2 UJ	1	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
4-Chlorophenyl-phenylether	nd 1.2 UJ		nd 5 U	nd 0.01 UJ	nd 0.01 ปัป	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Fluorene	nd 1.2 UJ		nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
4-Nitroaniline	nd 6.2 UJ		nd 25 U	nd 0.05 UJ	nd 0.05 ՄJ	nd 0.05 U	nd 0.1 UJ	nd 0.1 UJ	nd 0.25 UJ

TABLE 9: GROUND WATER ANALYTICAL RESULTS

SAFETY-KLEEN SITE, CHICAGO, IL

WELL I.D.	MW-4	MW-4 RERUN	MW-4	MW-5	MW-5 RERUN	MW-5	MW-6	MW-6 RERUN	MW-7
SAMPLING DATE	12/21/93	12/21/93	2/15/94	12/20/93	12/20/93	2/15/94	12/21/93	12/21/93	12/21/93
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)									
4,6-Dinitro-2-Methylphenol	nd 6.2 U	nd 5 UJ	nd 25 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U	nd 0.1 U	nd 0.1 UJ	nd 0.25 U
N-Nitrosodiphenylamine (1)	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
4-Bromophenyl-phenylether	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Hexachlorobenzene	nd 1.2 UJ	nd 1 UJ	ndi5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Pentachlorophenol	nd 6.2 U	nd 5 UJ	nd 25 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U	nd 0.1 U	nd 0.1 UJ	nd 0.25 U
Phenanthrene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Anthracene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Di-n-Butylphthalate	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Fluoranthene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Pyrene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Butylbenzylphthalate	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 ปป	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
3,3'-Dichlorobenzidine	nd 2.5 UJ	nd 2 UJ	nd 10 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.02 U	nd 0.04 UJ	nd 0.04 UJ	nd 0.1 UJ
Benzo (a) Anthracene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Chrysene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
bis (2-Ethylhexyl) Phthalate	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02	nd 0.02 UJ	nd 0.05 UJ
Di-n-Octyl Phthalate	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Benzo (b) Fluoranthene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Benzo (k)Fluoranthene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Benzo (a) Pyrene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 ปัป	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Indeno (1,2,3-cd) Pyrene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Dibenzo (a,h) Anthracene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Benzo (g,h,i) Perylene	nd 1.2 UJ	nd 1 UJ	nd 5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.05 UJ
Pyridine	nd 6.2 UJ	nd 5 UJ	nd 25 U	nd 0.05 UJ	nd 0.05 UJ	nd 0.05 U	nd 0.1 UJ	nd 0.1 UJ	3.4 25 J
3-Picoline	59 6.2 J	32 1 E	42 5	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U	0.66 0.05 J	0.28 0.02 J	26 5 J
1-Methyl-2-pyrrolidinone*	13 2.5 J	10 2 J	7.1 5	nd 0.02 UJ	nd 0.02 UJ	nd 0.01 U	nd 0.04 UJ	nd 0.04 UJ	23 10 J
N,N-Dimethylacetamide			2900 1000			nd 0.01 U			
Lab Name	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON
Analytical Method	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
•	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	2	2	1	2	2	1	2	2	2

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

UJ Analyte was not detected above the reported sample detection or quantitation limit but the limit is an estimated value.

B Compound was found in the blank and the sample

BJ Compound was found in the blank and the sample and the result is an estimated value

E Concentration exceeds the instrument calibration range and was subsequently diluted

Flag data qualifier

J Red color indicates the corrected data qualifier

TABLE 9: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-7 RERUN	MW-7		MW-8		MW-8 RERUN	MW-8		MW-9		MW-9 RERUN		MW-9	
SAMPLING DATE	12/21/93	2/15/94		12/21/93		12/21/93	2/14/94		12/21/93		12/21/93		2/15/94	
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	İ	5-10	1	5-10	5-10		5-10		5-10		5-10	
VOLATILE ORGANICS (mg/L)	RL Flag		-lag	RL	Flag	RL Flag	RL	Flag	RL	Flag	RL	Flag	RL	Flag
Chloromethane		nd 0.5	u l	nd 1	U		nd 0.5	U	nd 0.1	U	nd 0.01	U	nd 0.01	Ų
Bromomethane		nd 0.5 l	u l	nd 1	U		nd 0.5	U	nd 0.1	U	nd 0.01	U	nd 0.01	U
Vinyl Chloride		0.24 0.5	ر	0.67 1	J		0.67 0.5		nd 0.1	U	0.032 0.01		0.027 0.01	
Chloroethane		0.32 0.5	J	nd 1	U		nd 0.5	U	nd 0.1	υ	0.006 0.01	J	nd 0.01	U
Methylene Chloride		nd 0.25	υ l	0.63 0.5	1		0.62 0.25	Ţ	nd 0.05	U	nd 0.005	U	nd 0.005	U
Acetone		2.1 0.5		11 1	BJ		12 5		0.11 0.1	BJ	0.01 0.01	BU	nd 0.01	U
Carbon Disulfide			υ	nd 0.5	U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
1,1-Dichloroethene			υľ	0.72 0.5			nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
1,1-Dichloroethane		0.32 0.25		1.1 0.5			1.2 0.25		0.078 0.05		0.027 0.005		0.045 0.005	
1,2-Dichloroethene (total)		0.63 0.25	- 1	2 0.5			3.2 0.25		0.047 0.05		0.05 0.005	1	0.051 0.005	
Chloroform		•	υΙ	2.7 0.5			nd 0.25	U	0.049 0.05	J	0.048 0.005		0.048 0.005	
1,2-Dichloroethane			υl	10 0.5			nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
2-Butanone			υ	2.2 1	İ		nd 0.5	U	nd 0.1	U	nd 0.01	U	nd 0.01	U
1,1,1-Trichloroethane			υl	3.1 0.5			4.2 0.25		nd 0.05	U	0.008 0.005		0.015 0.005	
Carbon Tetrachloride			υΙ	0.82 0.5			nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
Vinyl Acetate			υl	nd 1	υ		nd 0.5	U	nd 0.1	U	nd 0.01	U	nd 0.01	U
Bromodichloromethane			υl	nd 0.5	U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
1,2-Dichloropropane			u l	nd 0.5	υ		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
cis-1,3-Dichloropropene			υΙ	nd 0.5	υl		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
Trichloroethene			υ	3.8 0.5			0.82 0.25		0.017 0.05	J	0.015 0.005	ĺ	0.007 0.005	
Dibromochloromethane			u l	nd 0.5	U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
1,1,2-Trichloroethane			υ	nd 0.5	U		nd 0.25	υ	nd 0.05	U	nd 0.005	U	nd 0.005	U
Benzene		0.33 0.25		2.3 0.5			0.22 0.25	J	0.016 0.05	J	0.01 0.005		0.008 0.005	*
Trans-1,3-Dichloropropene			υ	nd 0.5	υ		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
Bromoform			υ	nd 0.5	υ		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
4-Methyl-2-pentanone		1 0.5	_	nd 1	U		0.38 0.5	J	nd 0.1	U	nd 0.01	U	nd 0.01	U
2-Hexanone			υ	nd 1	υ		nd 0.5	υ	nd 0.1	U	nd 0.01	U	nd 0.01	U
Tetrachloroethene			U	5 0.5			1.3 0.25		nd 0.05	U	nd 0.005	U	nd 0.005	U
1,1,2,2-Tetrachloroethane			Ü	nd 0.5	U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
Toluene		1.6 0.25	-	18 0.5			18 2.5		nd 0.05	U	nd 0.005	U	nd 0.005	U
Chlorobenzene			U	3 0.5			nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
Ethylbenzene		0.41 0.25	_	nd 0.5	U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
Styrene			U	nd 0.5	U		nd 0.25	U	nd 0.05	U	nd 0.005	U	nd 0.005	U
Total Xylenes		0.19 0.25	J	nd 0.5	U		0.22 0.25	J	nd 0.05	U	nd 0.005	U	nd 0.005	· U
Tetrahydrofuran		22 2.5		26 1	J		23 2.5		0.51 0.05		0.089 0.005		0.52 0.025	
Trichlorotrifluoroethane		3.1 5	J	nd 1	Ü		9.1 0.5		nd 0.1	U	nd 0.01	U	nd 0.01	U
Chlorodibromomethane			-		_				1					
2-Chloroethylvinylether									1					
Flouorotrichloromethane														
Dichlorodifluoromethane	.													

TABLE 9: GROUND WATER ANALYTICAL RESULTS

WELL I.D. SAMPLING DATE	MW-7 RERUN		MW-8	MW-8 RERUN	MW-8	MW-9	MW-9 RERUN	MW-9
	12/21/93	2/15/94	12/21/93	12/21/93	2/14/94	12/21/93	12/21/93	2/15/94
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)								
Phenol	nd 0.05 UJ	nd 0.4 U	nd 0.1 U	nd 0.2 UJ	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
bis(2-Chloroethyl) ether	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2-Chlorophenol	nd 0.05 UJ	nd 0.4 U	nd 0.1 U	nd 0.2 UJ	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
1,3-Dichlorobenzene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
1,4-Dichlorobenzene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Benzyl alcohol	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
1,2-Dichlorobenzene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2-Methylphenol	nd 0.05 UJ	nd 0.4 U	nd 0.1 U	nd 0.2 UJ	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
bis(2-Chloroisopropyl) ether	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
4-Methylphenol	0.059 0.05 J	0.21 0.4 J	nd 0.1 U	0.15 0.2 J	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
N-Nitroso-Di-n-propylamine	nd 0.05 UJ	nd 0.4 U	nd 0.1 ปัง	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Hexachloroethane	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Nitrobenzene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Isophorone	nd 0.05 UJ	nd 0.4 U	0.1 0.1 J	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2-Nitrophenol	nd 0.05 UJ	nd 0.4 U	nd 0.1 U	nd 0.2 UJ	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
2,4-Dimethylphenol	0.053 0.05 J	nd 0.4 U	nd 0.1 U	nd 0.2 UJ	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
Benzoic acid	nd 0.25 UJ	1.1 2 J	nd 0.5 U	nd 1 UJ	nd 2.5 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U
bis(2-Chloroethoxy)methane	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2,4-Dichlorophenol	nd 0.05 UJ	nd 0.4 U	nd 0.1 U	nd 0.2 UJ	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
1,2,4-Trchlorobenzene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U nd 0.01 U
Naphthalene	0.006 0.05 J	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
4-Chloroaniline	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U nd 0.5 U	nd 0.01 UJ nd 0.01 UJ	nd 0.01 UJ nd 0.01 UJ	nd 0.01 U
Hexachlorobutadiene	nd 0.05 UJ	nd 0.4 U nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ nd 0.2 UJ	nd 0.5 U nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
4-Chloro-3-Methylphenol	nd 0.05 UJ		nd 0.1 U nd 0.1 UJ	nd 0.2 UJ nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2-Methylnaphthalene	nd 0.05 UJ		nd 0.1 UJ nd 0.1 UJ	1	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Hexachlorocyclopentadiene	nd 0.05 UJ nd 0.05 UJ	nd 0.4 U nd 0.4 U	nd 0.1 U	nd 0.2 UJ nd 0.2 UJ	nd 0.5 U	nd 0.01 U	nd 0.01 UJ	nd 0.01 U
2,4,6-Trichlorophenol	nd 0.05 UJ nd 0.25 UJ	nd 2 U	nd 0.1 U	nd 0.2 UJ	nd 2.5 U	nd 0.05 U	nd 0.05 UJ	nd 0.07 U
2,4,5-Trichlorophenol	nd 0.25 UJ	nd 0.4 U	nd 0.5 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.03 UJ	nd 0.01 UJ	nd 0.01 U
2-Chloronaphthalene 2-Nitroaniline	nd 0.05 UJ	nd 2 U	nd 0.1 03	nd 0.2 03	nd 2.5 U	nd 0.05 UJ	nd 0.05 UJ	nd 0.05 U
Dimethyl Phthalate	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Acenaphthylene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2,6-Dinitrotoluene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
3-Nitroaniline	nd 0.25 UJ	nd 2 U	nd 0.5 UJ	nd 1 UJ	nd 2.5 U	nd 0.05 UJ	nd 0.05 UJ	nd 0.05 U
Acenaphthene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2,4-Dinitrophenol	nd 0.25 UJ	nd 2 U	nd 0.5 U	nd 1 UJ	nd 2.5 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U
4-Nitrophenol	nd 0.25 UJ	nd 2 U	nd 0.5 U	nd 1 UJ	nd 2.5 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U
Dibenzofuran	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
2,4-Dinitrotoluene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
ethylphthalate	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
4-Chlorophenyl-phenylether	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Fluorene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
4-Nitroaniline	nd 0.25 UJ	nd 2 U	nd 0.5 UJ	nd 1 UJ	nd 2.5 U	nd 0.05 UJ		nd 0.05 U

TABLE 9: GROUND WATER ANALYTICAL RESULTS

SAFETY-KLEEN SITE, CHICAGO, IL

WELL I.D.	MW-7 RERUN	MW-7	MW-8	MW-8 RERUN	MW-8	MW-9	MW-9 RERUN	MW-9
SAMPLING DATE	12/21/93	2/15/94	12/21/93	12/21/93	2/14/94	12/21/93	12/21/93	2/15/94
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	5-10	5-10	5-10
SEMI-VOLATILE ORGANICS (mg/L)								ĺ
4,6-Dinitro-2-Methylphenol	nd 0.25 UJ	nd 2 U	nd 0.5 U	nd 1 UJ	nd 2.5 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U
N-Nitrosodiphenylamine (1)	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 ปป	nd 0.01 U
4-Bromophenyl-phenylether	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Hexachlorobenzene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Pentachlorophenol	nd 0.25 UJ	nd 2 U	nd 0.5 U	nd 1 UJ	nd 2.5 U	nd 0.05 U	nd 0.05 UJ	nd 0.05 U
Phenanthrene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Anthracene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Di-n-Butylphthalate	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Fluoranthene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Pyrene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Butylbenzylphthalate	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 ปป	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
3,3'-Dichlorobenzidine	nd 0.1 UJ	nd 0.8 U	nd 0.2 UJ	nd 0.4 UJ	nd 1 U	nd 0.02 UJ	nd 0.02 UJ	nd 0.02 U
Benzo (a) Anthracene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Chrysene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
bis (2-Ethylhexyl) Phthalate	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	0.001 0.01 J	nd 0.01 UJ	nd 0.01 U
Di-n-Octyl Phthalate	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Benzo (b) Fluoranthene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Benzo (k.) Fluoranthene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Benzo (a) Pyrene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 ปป	nd 0.01 UJ	nd 0.01 U
Indeno (1,2,3-cd) Pyrene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Dibenzo (a,h) Anthracene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Benzo (g,h,i) Perylene	nd 0.05 UJ	nd 0.4 U	nd 0.1 UJ	nd 0.2 UJ	nd 0.5 U	nd 0.01 UJ	nd 0.01 UJ	nd 0.01 U
Pyridine	1.3 0.25 E	2.5 2	33 25 J	19 1 E	21 2.5	nd 0.05 UJ	nd 0.05 UJ	nd 0.05 U
3-Picoline	9.2 0.05 E	13 2	360 100 J	62 0.2 E	92 25	0.14 0.01 J	0.073 0.01 J	0.15 0.01
1-Methyl-2-pyrrolidinone*	8.8 O.1 E	19 2	1100 200 J	200 0.4 E	200 25	0.005 0.02 J	0.005 0.02 J	0.007 0.01 J
N,N-Dimethylacetamide		11 2			53 25			nd 0.01 U
Lab Name	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON
Analytical Method	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
•	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	2	1	2	2	1	2	2	11

¹ Canonie, 12/1991, Appendix C

RL Reporting Limit

² Loose Lab Sheet provided by Roy F. Weston - Gulf Coast Lab. January, 1994

^{*} Canonie, 12/1991, Appendix C, Lab report page 1c

U Compound was not detected at or above the reporting limit

J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)

UJ Analyte was not detected above the reported sample detection or quantitation limit but the limit is an estimated value.

B Compound was found in the blank and the sample

BJ Compound was found in the blank and the sample and the result is an estimated value

E Concentration exceeds the instrument calibration range and was subsequently diluted

J Red color indicates the corrected data qualifier

TABLE 9: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-10	MW-10 RERUN	MW-10 DUP	MW-10 DUP RERUN	MW-10	RINSE BLANK	RINSE BLANK	TRIP BLANK	RINSE BLANK
SAMPLING DATE	12/21/93	12/21/93	12/21/93	12/21/93	2/14/94	12/21/93	RERUN	12/21/93	2/16/94
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	-	-	<u></u>	
VOLATILE ORGANICS (mg/L)	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag	RL Flag
Chloromethane	nd 1 U		nd 1 U		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Bromomethane	nd 1 U		nd 1 U		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Vinyl Chloride	nd 1 U		nd 1 U		0.064 0.1 J	nd 0.01 U		nd 0.01 U	nd 0.01 U
Chloroethane	1.5 1		1.6 1		1.1 0.1	nd 0.01 U		nd 0.01 U	nd 0.01 U
Methylene Chloride	nd 0.5 U		nd 0.5 U		0.057 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Acetone	nd 1 U		0.68 1 JB	ļ	0.32 0.1	nd 0.01 U		nd 0.01 U	nd 0.01 U
Carbon Disulfide	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1-Dichloroethene	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1-Dichloroethane	0.33 0.5 J		0.28 0.5 J		0.16 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,2-Dichloroethene (total)	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Chloroform	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,2-Dichloroethane	0.65 0.5	:	nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
2-Butanone	nd 1 U		nd 1 U		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
1,1,1-Trichloroethane	0.25 0.5 J		nd 0.5 U		0.068 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Carbon Tetrachloride	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Vinyl Acetate	nd 1 U		nd 1 U		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Bromodichloromethane	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,2-Dichloropropane	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
cis-1,3-Dichloropropene	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Trichloroethene	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Dibromochloromethane	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1,2-Trichloroethane	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Benzene	2.3 0.5		2.3 0.5		1.6 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Trans-1,3-Dichloropropene	nd 0.5 U	•	nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Bromoform	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
4-Methyl-2-pentanone	nd 1 U		nd 1 U		0.2 0.1	nd 0.01 U		nd 0.01 U	nd 0.01 U
2-Hexanone	nd 1 U		nd 1 U		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Tetrachloroethene	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
1,1,2,2-Tetrachloroethane	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Toluene	6.6 0.5		6.6 0.5		5.3 0.25	nd 0.005 U		nd 0.005 U	nd 0.005 U
Chlorobenzene	nd 0.5 U		nd 0.5 U		nd 0.05 U	nd 0.005 U		nd 0.005 U	nd 0.005 U
Ethylbenzene	1.1 0.5		1 0.5		0.84 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Styrene	nd 0.5 U		nd 0.5 U		0.056 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Total Xylenes	nd 0.5 U		nd 0.5 U		0.91 0.05	nd 0.005 U		nd 0.005 U	nd 0.005 U
Tetrahydrofuran	32 1 J		34 1 J		31 2.5	nd 0.005 U		nd 0.005 U	nd 0.005 U
Trichlorotrifluoroethane	nd 1 U		nd 1 U		nd 0.1 U	nd 0.01 U		nd 0.01 U	nd 0.01 U
Chlorodibromomethane									
2-Chloroethylvinylether									
Flouorotrichloromethane									
chlorodifluoromethane									

TABLE 9: GROUND WATER ANALYTICAL RESULTS

WELL I.D.	MW-10		MW-10 RERUN		MW-10 DU	IP	MW-10 DUP RERUN	MW-10		RINSE BLANK	RINSE BLANK	TRIP BLANK	RINSE BLANK
SAMPLING DATE	12/21/93		12/21/93		12/21/93		12/21/93	2/14/94		12/21/93	RERUN	12/21/93	2/16/94
SAMPLING DEPTH/INTERVAL (ft)	5-10		5-10		5-10		5-10	5-10	l_		-		-
SEMI-VOLATILE ORGANICS (mg/L)							,						
P henol	0.062 0.05		nd 0.05	UJ	nd 0.1	U	nd 0.1 UJ	0.067 0.1	J	nd 0.01 U	nd 0.01 UJ		nd 0.01 U
bis(2-Chloroethyl) ether	nd 0.05 U	IJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
2-Chlorophenol	nd 0.05 U		nd 0.05	IJ	nd 0.1	U	nd 0.1 UJ	nd 0.1	U .	nd 0.01 U	nd 0.01 UJ		nd 0.01 U
1,3-Dichlorobenzene	nd 0.05 U	IJ		UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
1,4-Dichlorobenzene	nd 0.05 U	- 1		UJ	nd 0.1	IJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Benzyl alcohol	nd 0.05 U			IJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U nd 0.01 U
1,2-Dichlorobenzene	nd 0.05 U	IJ		UJ	nd 0.1	IJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
2-Methylphenol	0.024 0.05 J	I	0.025 0.05	J	0.022 0.1	J	0.025 0.1 J	nd 0.1	U	nd 0.01 U	nd 0.01 UJ		nd 0.01 U
bis(2-Chloroisopropyl) ether	nd 0.05 U	JJ		UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
4-Methylphenol	0.04 0.05 J		0.045 0.05	J	0.041 0.1	J	0.045 0.1 J	0.035 0.1	J	nd 0.01 U	nd 0.01 UJ		nd 0.01 U
N-Nitroso-Di-n-propylamine	nd 0.05 U		nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ			nd 0.01 U
Hexachloroethane	nd 0.05 U	- 1	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ	1		nd 0.01 U
N itrobenzene	nd 0.05 U		nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ			nd 0.01 U
Isophorone	nd 0.05 U	í	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ			nd 0.01 U
2-Nitrophenol	nd 0.05 U)		ÚĴ	nd 0.1	U	nd 0.1 UJ	nd 0.1	Ÿ	nd 0.01 U	i i		nd 0.01 U
2,4-Dimethylphenol	0.046 0.05 J		0.046 0.05	J	0.04 0.1	J	nd 0.1 UJ	0.064 0.1	J	nd 0.01 U	nd 0.01 UJ nd 0.05 UJ		nd 0.01 U
Benzoic acid	nd 0.25 L		nd 0.25	UJ	nd 0.5	U	nd 0.5 UJ	nd 0.5	U	nd 0.05 U nd 0.01 UJ			nd 0.03 U
bis(2-Chloroethoxy)methane	nd 0.05		nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U		nd 0.01 UJ		nd 0.01 U
2,4-Dichlorophenol	nd 0.05 U		nd 0.05	UJ	nd 0.1	U	nd 0.1 UJ	nd 0.1	U	nd 0.01 U nd 0.01 UJ			nd 0.01 U
1,2,4-Trchlorobenzene		IJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U				nd 0.01 U
N aphthalene	1	JJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	U	nd 0.01 UJ nd 0.01 UJ	į.		nd 0.01 U
4-Chloroaniline		IJ	nd 0.05	UJ	nd 0.1	UJ UJ	nd 0.1 UJ nd 0.1 UJ	nd 0.1 nd 0.1	U	nd 0.01 UJ			nd 0.01 U
Hexachlorobutadiene		וו	nd 0.05	UJ	nd 0.1 nd 0.1	U	nd 0.1 UJ	0.03 0.1	1	nd 0.01 U	nd 0.01 UJ		nd 0.01 U
4-Chloro-3-Methylphenol	nd 0.05 U	ا ، ا	nd 0.05	UJ UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	ŭ	nd 0.01 U			nd 0.01 U
2-Methylnaphthalene	1	IJ	nd 0.05 nd 0.05		nd 0.1	UJ	nd 0.1 UJ	nd 0.1	ŭ	nd 0.01 U			nd 0.01 U
Hexachlorocyclopentadiene		JJ	nd 0.05	UJ UJ	nd 0.1	U	nd 0.1 UJ	nd 0.1	ŭ	nd 0.01 U	nd 0.01 UJ		nd 0.01 U
2,4,6-Trichlorophenol	nd 0.05 U	,	nd 0.05	UJ	nd 0.1	U	nd 0.1 UJ	nd 0.5	Ü	nd 0.05 U	nd 0.05 UJ		nd 0.05 U
2,4,5-Trichlorophenol	nd 0.25 t)]] [nd 0.25	UJ	nd 0.3	ΩJ	nd 0.3 UJ	nd 0.0	ŭ	nd 0.01 Us			nd 0.01 U
2-Chloronaphthalene		J.3 J.3	nd 0.25	UJ	nd 0.1	UJ	nd 0.5 UJ	nd 0.1	ü	nd 0.05 U.			nd 0.05 U
2-Nitroaniline	,	JJ	nd 0.25	UJ	nd 0.3	UJ	nd 0.1 UJ	nd 0.1	Ü	nd 0.01 U.			nd 0.01 U
Dimethyl Phthalate		JJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	υl	nd 0.01 U.			nd 0.01 U
Acenaphthylene 2,6-Dinitrotoluene		JJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	ŭ	nd 0.01 U			nd 0.01 U
3-Nitroaniline	1	JJ	nd 0.25	UJ	nd 0.5	UJ	nd 0.5 UJ	nd 0.5	Ü	nd 0.05 U	1		nd 0.05 U
Acenaphthene		JJ	nd 0.25	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	Ū	nd 0.01 U.			nd 0.01 U
2,4-Dinitrophenol	nd 0.25	11	nd 0.25	UJ	nd 0.5	II.	nd 0.5 UJ	nd 0.5	Ü	nd 0.05 U			nd 0.05 U
4-Nitrophenol	nd 0.25		nd 0.25	UJ	nd 0.5	II	nd 0.5 UJ	nd 0.5	Ü	nd 0.05 U	1		nd 0.05 U
Dibenzofuran		UJ	nd 0.25	UJ	nd 0.0	UJ	nd 0.1 UJ	nd 0.1	Ū	nd 0.01 U			nd 0.01 U
2.4-Dinitrotoluene		UJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	Ũ	nd 0.01 U			nd 0.01 U
ethylphthalate	i i	UJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	Ū	nd 0.01 U			nd 0.01 U
ethylphthalate 4-Chlorophenyl-phenylether	!	UJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	Ü	nd 0.01 U			nd 0.01 U
Huorene	1	UJ	nd 0.05	IJ.	nd 0.1	UJ	nd 0.1 UJ	nd 0.1	Ü	nd 0.01 U			nd 0.01 U
4-Nitroaniline		UJ	nd 0.05	UJ	nd 0.1	UJ	nd 0.5 UJ	nd 0.5	Ü	nd 0.05 U	l .		nd 0.05 U
-1-IAITI OQUANILE	j 110 0.20 (- UU	110 0.20	00	110 0.0	~~	1 0.0	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	_		1	i,	•

TABLE 9: GROUND WATER ANALYTICAL RESULTS

- QUALIFIED DATA (1993, 1994 data only) SAFETY-KLEEN SITE, CHICAGO, IL

WELL I.D.	MW-10	MW-10 RERUN	MW-10 DUP	MW-10 DUP RERUN	MW-10	RINSE BLANK	RINSE BLANK	TRIP BLANK	RINSE BLANK
SAMPLING DATE	12/21/93	12/21/93	12/21/93	12/21/93	2/14/94	12/21/93	RERUN	12/21/93	2/16/94
SAMPLING DEPTH/INTERVAL (ft)	5-10	5-10	5-10	5-10	5-10	<u>.</u>		-	1
SEMI-VOLATILE ORGANICS (mg/L)									
4,6-Dinitro-2-Methylphenol	nd 0.25 U	nd 0.25 UJ	nd 0.5 U	nd 0.5 UJ	nd 0.5 U	nd 0.05 U	nd 0.05 UJ		nd 0.05 U
N-Nitrosodiphenylamine (1)	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
4-Bromophenyl-phenylether	nd 0.05 UJ	nd 0.05 ปป	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Hexachlorobenzene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Pentachlorophenol	nd 0.25 U	nd 0.25 UJ	nd 0.5 U	nd 0.5 UJ	nd 0.5 U	nd 0.05 U	nd 0.05 UJ		nd 0.05 U
Phenanthrene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Anthracene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Di-n-Butylphthalate	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Fluoranthene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Pyrene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Butylbenzylphthalate	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
3,3'-Dichlorobenzidine	nd 0.1 UJ	nd 0.1 UJ	nd 0.2 UJ	nd 0.2 UJ	nd 0.2 U	nd 0.02 UJ	nd 0.02 UJ		nd 0.02 U
Benzo (a) Anthracene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Chrysene	nd 0.05 ปัป	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
bis (2-Ethylhexyl) Phthalate	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Di-n-Octyl Phthalate	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Benzo (b) Fluoranthene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Benzo (k.) Fluoranthene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Benzo (a) Pyrene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Indeno (1,2,3-cd) Pyrene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Dibenzo (a,h) Anthracene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Benzo (g,h,i) Perylene	nd 0.05 UJ	nd 0.05 UJ	nd 0.1 UJ	nd 0.1 UJ	nd 0.1 U	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
Pyridine	nd 0.25 UJ	nd 0.25 UJ	nd 0.5 UJ	nd 0.5 UJ	nd 0.5 U	nd 0.05 UJ	nd 0.05 UJ		nd 0.05 U
3-Picoline	67 10 J	10 0.05 E	52 10 J	24 0.1 E	68 4	nd 0.01 UJ	nd 0.01 UJ		nd 0.01 U
1-Methyl-2-pyrrolidinone*	0.4 0.1 J	0.52 0.1 J	0.42 0.2 J	0.55 0.2 J	0.75 0.1	nd 0.02 UJ	nd 0.02 UJ		nd 0.01 U
N,N-Dimethylacetamide					1.1 0.1				nd 0.01 U
Lab Name	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON	R. F. WESTON
Analytical Method	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA	EPA
	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270	8240 & 8270
Source Document(s)	2	2	2	2	1	2	2	2	11

- 1 Canonie, 12/1991, Appendix C
- 2 Loose Lab Sheet provided by Roy F. Weston Gulf Coast Lab. January, 1994
- * Canonie, 12/1991, Appendix C, Lab report page 1c
- **RL Reporting Limit**
- U Compound was not detected at or above the reporting limit
- J Result is an estimated value below the reporting limit or a tetatively identified compound (TIC)
- UJ Analyte was not detected above the reported sample detection or quantitation limit but the limit is an estimated value.
- B Compound was found in the blank and the sample
- BJ Compound was found in the blank and the sample and the result is an estimated value
- E Concentration exceeds the instrument calibration range and was subsequently diluted

Flag data qualifier

J Red color indicates the corrected data qualifier

TABLE 10: APPENDIX 9 / APPENDIX I SCAN GROUND WATER ANALYTICAL RESULTS FOR MW-2 (FEBRUARY 14-16, 1994) SAFETY-KLEEN CHICAGO RECYCLE CENTER, CHICAGO,IL

MW-2 Duplicate 2/1594	5-10 RL Flag	nd 0.005 U	nd 0.03 0 0.011 0.002 0.099 0.05	nd 0.005 U	nd 0.02 0.026 0.02 nd 0.02 U	nd 0.0002 U nd 0.02 U	0.011 0.002 nd 0.1 U nd 0.002 U	00	nd 0.01 U 0.14 0.01 RL Flag	nd 10 U U	nd 10 U nd 10 U 15 5	nd 10 U 3.5	70 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	100 5 14 5 14 5 14 5	1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	1 d d 2 d d 3 d d	5 6 6 5 6 6 5 6 6 6	ad sa Sandasa C C	2 E E	nd 10 0 01 pr	2 2 c	3 g g	265 U	2d 500 C	ad 20 C C C C C C C C C C C C C C C C C C	2 2 3 2 3 9 2 3 9	1 2 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	nd 2000 U	ad 10 U U	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2	nd 20 Und 20 UNd 20 U		C C C C	C C C C C C C C C C C C C C C C C C C	⊃ C C C C C C C C C C C C C C C C C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	C C C	nd 2 nd 10 U	. C C C C C C C C C C C C C C C C C C C	G C C C	C C C	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	nd 2 0 nd 10 U
MW-2 2/15/94	5-10 RI Flad	nd 0.005 U 1 bn	nd 0.03 0.0096 0.004 0.095 0.05	nd 0.005	nd 0.02 0.021 0.02 0.021 0.02	nd 0.0002 U	0.0069 0.002 nd 0.1 U	nd 0.1	nd 0.01 U 0.089 0.01 RL Flag	nd 10 U 01	2 로 로 (1) 10 년 (2) 10 년 (2)	nd 10. U	nd 5 br U 5.7.5	385 	an 5. 4.1 5. ช. ช. bn	ы д 10 го 10 го	na o e de de e de de de de de de de de de de de de de	O O	21.5 nd 55 U	nd 10 U	o per e	740 o	nd 5 U.	nd 500	7 20 00 C C C C C C C C C C C C C C C C C	nd 10	20 C C C C C C C C C C C C C C C C C C C	nd 2000 Ld 20	nd 10 U	nd 20 U	7.3 70 J	7d 20 U	nd 3.2 U	1 32 C C C C C C C C C C C C C C C C C C	nd 32 C	nd 3.2 U	76 3.2 U	a a a a a a a a a a a a a a a a a a a	nd 3.2 U	7d 3.2 U	nd 32 32 0 0 32 0 0 0	3 2 2 E	nd 3.2 nd 3.2 nd 16	nd 3.2 U	nd 3.2 U nd 3.2 U nd 3.2 U nd 16 U	nd 3.2 U
WELL I.D. SAMPLING DATE	SAMPLING DEPTHANTERVAL (#)	INORGANICS (mg/L) Cyanide, Total Sulfide	Silver, Total Arsenic, Total Bartim Total	Beryllium, Total Cadmium, Total	Cobalt, Total Chromium, Total	Mercury, Total Nickel, Total	Lead, Total Antimony, Total Solonium Total	Setembra, 10tal Tin, Total Thailium, Total	Vanadium, Total Zinc, Total Vol. 4711 F. OPSANICS (mod.)	Chloromethane	Vinyl Chloride Chloroethan	Acetone Circuito Carbon Disulfide	1,1-Dichloroethene 1,1-Dichloroethane 1,2-Dichloroethane	Chloroform 1,2-Dichloroethane	2-Butanone 1,1,1-Trichloroethane Carbon Tetrachloride	Vinyl Acetate Bromodichloromethane	1,2-Dichloropropane cis-1,3-Dichloropropene	Dibromochloromethane 1,1,2-Trichloroethane	Benzene Trans-1,3-Dichloropropene	4-Methyl-2-pentanone 2-Hexanone	Tetrachloroethene 1,1,2,2-Tetrachloroethane	Toluene Chlorobenzene	Styrene Styrene Xylene (total)	Acrolein Acrylonitrile	Trichlorofluoromethane Dichlorodifluoromethane Acetonitrile	lodomethane Propionitrile (Ethyl Cyanide)	3-Chloropropene Methacrylonitrile Dibromomethane	Isobutyl alcohol 1,2-Dibromoethane	1,1,1,2-Tetrachloroethane 1,2,3-Trichloropropane trans-1,4-Dichloro-2-butene	1,2-Dibromo-3-chloropropane 2-Chloro-1,3-Butadiene	Trichlorotrifluoroethane Tetrahydrofuran Methylmethacrylate	Ethylmethacrylate Pentachloroethane	Phenol bis(2-Chloroethyl)ether	2-Chlorophenol 1,3-Dichlorobenzene	1,4-Dichlorobenzene Benzyl alcohol 1,2-Dichlorobenzene	2-Methylphenol bis(2-Chloroisopropyl)ether	4-Metry/phenol N-Nitroso-Di-n-propylamine Hexachloroethane	Nitrobenzene Isophorone	z-vitropriero 2,4-Dimethylphenol Benzoic acid	bis(2-Chloroethoxy)methane 2,4-Dichlorophenol 1.2.4-Trichlorobenzene	Naphthalene 4-Chloroaniline	Hexachioroburadiene 4-Chloro-3-methylphenol 2-Methylnaphthalene	Hexachlorocyclopentadiene 2,4,6-Trichlorophenol 2,4,5-Trichlorophenol	2-Chloronaphthalene 2-Nitroaniline Dimethylohthalate	Acenaphtrylene 2,6-Dinitrotoluene 3-Nitroaniline	Acenaphthene 2,4-Dinitrophenol

TABLE 10: APPENDIX 9 / APPENDIX I SCAN GROUND WATER ANALYTICAL RESULTS FOR MW-2 (FEBRUARY 14-16, 1994) Safety-kleen chicago recycle center, chicago,il

viether viether henol henol henol henol henol he (1) ylether alate alate sne ne e e e e e ate	2016 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		200 E	
viether henol ine (1) ylether alate en en arte e e arte	5 5 <th></th> <th>5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5</th> <th>:מרככככככככ מכככככככככככככככככככככ</th>		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	:מרככככככככ מכככככככככככככככככככככ
viether henol ine (1) ylether alate amine mate e e e e ate ate	55555555555555555555555555555555555555		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: ברככככככככ בכככככככככככככככככככככ
viether henol line (1) yiether alate amine line line line line line line line l	55555555555555555555555555555555555555		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: ברככככככככ בככככככככככככככככככככ
viether henol line (1) yiether alate e e e e e e ate ate	8 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		{	:מרככככככככ כככככככככככככככככככ
henol henol henol le (1) yiether re e e e e e e ate	E		{	: ברבכבבבבבב בכככבבבבבבב
henol Ine (1) Viether alate aratine ine ine e artine atte	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		{	:מרככככככככ ככככככככככככככככככ
henol Ine (1) Viether alate The The The The The The The The The Th	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		. X X X X X X X X X X X X X X X X X X X	מרככככככככ בכככככככככככככככככככ
nne (1) ylether nne nne nne nate e amire nate ate	2		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	מה בכככבכבכ בככככככככככככבבב
ylether alate be sne mate e e e e e e e ate ate ate ate ate at	55555555555555555555555555555555555555		¥	:מרככככככככ כככככככככככככככ
alate anine ine amine amine site	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		. X	
alate nne nnate e arate araine site	5 5 <td></td> <td>£</td> <td>ים - בכככבבב בכככבבבבבבבבבבבבבבבבב</td>		£	ים - בכככבבב בכככבבבבבבבבבבבבבבבבב
alate nne nne amine nate e ste	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		,	:מרכככככככ מכככככככככככככ
alate nne nnate e amine ste	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		. £ 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	מה בכככבכבכ בככככבבבבבב
alate aratine amine amine arate e e ste	5 5 <td></td> <td>\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$</td> <td>מה בככככככככ בככככככככככככככ</td>		\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	מה בככככככככ בככככככככככככככ
alate alate ne sne sne sne sne sne sne sne sate e ste ste ste ste ste ste ste ste ste	55555555555555555555555555555555555555		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~	:מרככככככככככככככככככככככככככככ
enzidine acene acene halate halate anthene anthene ca)pyrene ryfere stylate ylate ylate ylate ylate ylate ylate halate halate halate halate halate halate halate	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		, , , , , , , , , , , , , , , , , , , ,	:מרככככככככ כככככככככככ
alate ne nne amine nate e ate	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5		: 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	:מרכככככככ בככככככככככ
alate ne ne amine amine e e e e ste	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		מרכככככככ בככככככככככככ
ne nne amine nate e e ste	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u> </u>	:מרבככבכככם בכככככככ
ne ne amine amine e e e e ste	8 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			מרככככככככ ככככככנ
ne ine amine nate e ste	2			מרכככבכככככ כככככ
ne ine amine nate e ate	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6			מרככככככ ככככ
ine arrine arrine e e atte	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		: ¿	:מרכככככככ בככנ
me amine nate e ste	2		- 2 5 9 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	מרככככככככ ככ
ine amine nate e ste	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	\$ \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ים בככככככככ ב
ine amine nate e ate	6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6)	: מרככככככככ
amine nate e e ste	2		1	
amine nate e ate	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		55555555555555555555555555555555555555	: מרכככככככ
amine nate e ate	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: כרככככככ
nate e ate	6 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	: כרכככככ
ate of the control of	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	6 32 32 22 25 25 25 25 25 25 25 25 25 25 25 25		5555755555 2222225555 22222222	
v	nd 32 nd 32 nd 32 nd 32 nd 32 nd 32 nd 32 nd 32		2 2 2 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4	
dîne	25 25 25 25 25 25 25 25 25 25 25 25 25 2		1 2 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4	:כרכנ
	5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	·	1 2 2 2 2 2 3 3 4 4 4 4 4 4 4 4 4 4 4 4 4	~ ⊃ :
	nd 32 nd 32 32 32		7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	- :
Setoprietione Nitrosomorpholine	nd 32 nd 16 32	———	7 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	nd 16		nd 2 2 2 10)
	32	_	7 7 7 7 7 9 7 9 7 9 7 9 7 9 9 9 9 9 9 9	- :
a-Dimethylphenethylamine	7	_	1 6	> =
	3.5		7 80	· –
ine	nd 3.2		nd 2	ɔ :
-Nitroso-di-n-butylamine	nd 3.2		20.00	, _
arroie 2.4.5-Tetrachlorobenzene	nd 3.2		nd 2	_
	nd 3.2	<u> </u>	7d 2	- :
9	nd 3.2	— —	2 2	> =
3-Dinitrobenzene	3.2		2 6	o =
entachlorobenzene	70 3.2 3.2		1 C	, ,
Naphthylamine	nd 3.2		nd 2	Þ
3,4,6-Tetrachlorophenol	nd 3.2	—	2 2	> =
3,5-Trinitrobenzene	74 3.2		nd 2) =
henacetin	nd 3.2		nd 2	- :
Diphenylamine	nd 3.2		7 7 7	> =
-Nitro-o-toluidine	79 3.2		19 Z))
-Aminobiphenyi	3 2 2 3 2		nd 2	· >
-sec-Butyl-4.6-dinitrophenol	nd 16	_	nd 10	⊃
chloronitro	nd 16		nd 10	- :
-Nitroquinoline-1-oxide	nd 654	 =	4 C	,
lethapyriene ramita	1 6 b		nd A	· >
hlorobenzilate	nd 3.2		nd 2	⊃
-Dimethylaminoazobenzene	nd 3.2		2 7	= =
3Dimethylbenzidine	7 d 3.2		2 2	> =
-Acetylaminoliuorene 12. Dimethylbenz(a)anthracene	74 3 5 1 3 2			>
hlorophen	nd 29		nd 18	> :
-Methylcholanthrene	nd 3.2			>
-Picoline	55 55 56 55 56 55		95 16 16	~
N-Dimethylacetamide	1800 160	-		į
CBs (mg/L)	RL 0.0025	Flag =	RL nd 0.0025	ŗ⊃
rocior-1016	nd 0.0025		nd 0.0025	· >
rocior-1232	nd 0.0025		nd 0.0025	- :
vroclor-1242	nd 0.0025		0.0025 0.0025	> =
rocior-1248	nd 0.005		nd 0.005	¬
Aroclor-1260	nd 0.005		nd 0.005	>
		1	WESTON/Culf Coast	
Lab Name WESTG	TON/Gulf Coast		FPA Appendix IX	

mi(s): the electronic disk provided by WESTON-GULF COAST, INC (RFW Batch Number: 9402G294), March 4, 1994 RL Reporting Limit Flag data qualifier U Compound was not detected at or above the reporting limit J Result is an estimated value below the reporting limit or a tetal

TABLE 11. HISTORIC STATIC WATER LEVEL AND WELL CONSTRUCTION DATA, Safety-Kleen, Chicago Recycle Center

MW10		594.23	:	594.58	8.49	585.74	e e e	:	!	591.18	589.62	591.23		
∑	Ì	2		55	20	\$5	reading		i	3.05	46	3.00		
MW9		596.72		594.03	12.99	583.73	clcv.	:	;	590.87	589.77	590.85		
X	٠	Š	,	Š	12	58.	reading		:	5.85	6.95	5.87		
MW8		596.61	:	593.92	13.58	583.03	elev.	;		591.27	590.63	591.39		
М		28		595	13	58	reading		- * *	5.34	5.98	5.22		
MW7		597.78		594.74	13.23	584.55	elev.	:		591.00	590.78	591.05		
×		265		265	13	285	reading	;	-	6.78	7.00	6.73		
MW6		594.26		594.62	9.53	584.73	elev.			591.00	591.22	591.04		
Z	;	<u>8</u>		594	9.	584	reading		;	3.26	3.04	3,22		
55		43		49	12.75	584.68	elev.		:	590.52	589.30	590.89		Ī
MW5		597.43	:	594.49	12.	584	reading			6.91	8.13	6.54		
74	Ī.	45		69	12.68	77	elev.	::	:	590.85	589.89	591.30		
MW4	:-	597.45	:	594.69	12	584.77	reading		:	6.60	7.56	6.15		
73	21	19	36	95	34	27	elev.	:	590.48	82.065	589.80	590.88		
MW3	593.21	593.61	593.36	593.95	10.34	583.27	reading	:	:	2.83	3.81	2.73		
72	87	30	19	55	24	90	elev.	:	591.75	591.25	590.31	591.37		
MW2	593.87	594.30	594.19	594.55	10,24	584.06	reading	:	;	3.05	3.99	2.93		
	22	44	80	16	_	23	Т	:::	588.22	588.69	590.13	588.83		
MWI	594.02	594.44	594.08	594.91	9.21	585.23	reading	::	;	5.75	4.31	5.61		
ı.	84		54			84	clev.	592.44	590.69	:	:	:		
P4**	594.84		593.54	:	9	588.84	cading	1 1	:	1		:		
	23	44	16	44		44	elev.	592.08	56135	591.15	589.81	;		
B3	595.02	595.44	593.19	594.44	9	589 44	reading	4 1 7	591.35	4.29 591.15	5.63	:		
	2	26	25	12		26	elev.	591.92 592.08	591 47		4 51 590.75 5.63 589.81	;	Γ	
P2	594 82	595.26	593.25	593 72	9	92 685	reading elev, reading elev, reading elev, reading elev.	:	:	4 13	4.51	:		_
		63		01	,	500 63	خ	::	:	592.96		:		
Б		59663	:	594 10	9	200	reading	:		Т		:		•
WELL ID	on of Casina Elevation (# 1/	op of Casing Elevation (#)^^	Ground Fleustion (# \^	Crowned Elevation (# >>>	Well Death (4 from ton of casing)	Corsen Bottom Elevation (#)	STATIC LEVEL DATA*	22-Oct-91	7.Nov-01	16-Dec-03	14.5.5.04**	25-Mav-94		

measured relative to top of easing notch for post-1991 static level data
 easing damaged sometime prior to December 1993
 *** statics for P-2 and P-3 measured on 16 Feb, 1994; no reading taken for P-1 because of an obstruction ^ surveyed 1991

A surveyed December, 1993
A met installed with 3' screens and 3' riser pipe
A series and 3' riser pipe

TABLE 12. SUMMARY OF HYDRAULIC CONDUCTIVITY TESTS, Safety-Kleen Chicago Recycle Center

	MAT HYD	RAULIC CO	HYDRAULIC CONDUCTIVITY (cm/sec)	Y (cm/sec)
Monitoring Well/Soil Boring	MW2	MW8	WW9	SB10 (14.5'-15')
Soil Type	clayey silt to silty clay	clayey silt to silty clay	clayey silt to silty clay	clay
TEST TYPE				AND STATE OF THE S
Solid Slug Falling Head Test		4.26E-04		
Solid Slug Rising Head Test	2.46E-05	4.82E-04		
Pneumatic Rising Head Test		8.16E-04	2.67E-04	
		7.41E-04	2.97E-04	
Laboratory Permeability Testing				2.40E-08

TABLE 13. SUMMARY OF DETECTED COMPOUNDS IN SOIL AND OCCURRENCE (Safety-Kleen Chicago Recycle Center)

Sall Baring	B-1	, T	B-2	Т		1-3	- F				B-4				·	B-5			B-6		B-8		MW-I	М	W-2	MW-3	1	S	SB-4			SB-5	1	SZ	-6	Į	SB-7		T	S.B-4			SB-9		SE	-10
Sampling Date	Oct-		Oct-9			:t-91	\dashv	Oct-91				ov-91		 		Oct-91			Oct-9		Oct-91		Oct-91	O	t-91	Oct-9	1	De	ec-93		ı	Deε-93			:-93		Dec-93			Dec-			Dec-93			c- 93
			2-4	8-10	6-B 1	3-10 1	0-12 (i-8 8-	10 10	0-12 1	2-14 1	4-16 16-1	18 18-2	0 2-4	4-6	6-8	8-10	10-12	4-6	8-10	2-4 8	-10 4-6	6-8	6-8	10-12	4-6 1	0-12 5	5-6 16.	.5-17 1	7-18 8.	5-9.5	9.5-10	18.5-20	6-7	17.5-18.5	8-8,5	11.5-12	12.5-13	7.5-8.5	17.5-1	8.5 19.5-2	20 8-9	17.5-16	8 18-19	7.5-9	17.5-18.
Detected TCLP Metals (mg/l)			Lengu		البساس							MUNIS						vector.			ourpi				44634	rigidă				0.70	HS HELLS		0.76	المراطقات	1.3	11111111111111111111111111111111111111	160	0.07			تسلطيت	1-56	na	10.000	كالتكنتا	
Barium	E = 01 E ** 1		TURNING TO SERVE	7170 27 8 140	100000000000000000000000000000000000000		CHIVE STREET	manu anar	Perantacia di indi		CAUCHARRE	HESHELDING		agesproper teck		onderski de krije.	7 12 12 12 12 12 12 12 12 12 12 12 12 12	100 C	BEARSON NECES		91 H77 u 1-033 k	REAR CONTRACT	COLUMN TO			anceni dui		11 3 1	na (0.72 B	10 U.S	nd 9.5	U.75	na v.5	i.j Herrika	j nav.s	0.69	0.87	al Daniel Stille		dayaaaaa	1.5	na	24.0000	0.041028345	salections.
Vanyl Chloride		Street and	1005-000	2000	r						1005010000			100000000000000000000000000000000000000	200/2000	safrings-costs:		Part Charles		٠٠٠٠				20-27-27-22-2		The second second	Ind	0.012 0.	.022 nd	0 011	45201.03636.03		1		reprise property			T	1	1		1			0.018	0.047
Chloroethane			. 1						- 1			İ		1	1		İ																						0.03	0,06				1	0.2	0.13
Methylene Chloride	İ		.		-					1	ĺ			1						- 1	-		İ			i				1 0.006	İ					0.009	0.036 B				B ~0.140				~0.051 B	
	0.022B	0.031 B	0.025 B 0	.180 B 0.	041B nd	0.062 0.	110 B 0.0	83 B 0.39	90 B 0.0	028 B 0.	.013 B 0.0)19 B ~0.0'	11 B 0.016	B 2.200 B	22.000 F	3 13.000 B	39.000 B	nd 0.250	2.200 B	~0.048 nđ	0.250 0.	430 B ∼0.05	7 BJ 0.370	B 3.4001	0.850 B	0.310 B	0.31		0.44 ~0 0.029 nd		0.200 B	па	~0.370 B	0,019	0.12	~0.6600 E ~0.004		na na	0.029 B	nd 0.0	11 nd 0.0	12 0.04	4 0.058	0.13	~0.052 B nd 0.006	~1,100 E ~,005
Cambon Dissifide # 1-DCE		1	,	ŀ		1	1								İ						1		Ì		1		Ι,	0.17 0.	1.029 Hu	10.000			ĺ			-4.004	114 0.000	112			ŀ				nd 0.006	0.5
t 1-DCA		- 1		1															1								(0.03 0.	0.012 nd	i 0.006	0.01	na	ad 0.006			0.048	nd 0.006	na	0.006				17 nd 0.00			nd 0.006
£,2-DCE (total)		- 1	, 1			Į.						ı]						-		ì	- 1							10.006			Į			0.043	nd 0.006	na	nd 0.000	6 0.02	6 0.00		05 nd 0,00			1.1
CMoroform .		- 1			-	Ì		-	1	1	-												-	ļ		l 1	1 '	0.21 0	0.15 nd	10.006						nd 0.006	0.024	na		1		na 0.0	0.062	2 nd 0.00	nd 0.006	0.17
L2DCA 2-Butanone		- 1	, 1		.		-	1			-										1							0.11 0.	0.029 nd	3 0.011	1					0.037	0.024	na na	nd 0.012	2 0.01	4 nd 0.0	112			nd 0.012	0.097
LLI-TCA	0.008	0.011	0.037	0.12	0.004	0.31	11 ~	0.002 0.	.01 nd	0.006 nd	1 0.006 ~	0.003 nd 0.	.006 nd 0.0	06 0,7	140	120	220	420				~0,0	38 nd 0.	120 0.45	0.52	~0.027		- •								0,006	nd 0.006		nd 0.00				- 1		0.045	~36
§ 2 Dichloropropane									i																			0.012 nd]		.		, .	.	.	1	1		
TCE	0.2	0.072	0.32	0.5	1.039	5.6	13 0	.039 0.0	.062 nd	0.006 nd	1 0.006 0	0.009 nd 0	.006 ~0.0	9.9	510	380	740	530	~0.110	0.047 nd	0.130	13 0.0	6 0.8	8.4	5.2	0.34	0.055 0	0.096 0	0.051 nd	1 0.006	ŀ					~0.004	nd 0.006	na na	nd 0.00						nd 0.006	0.07
E 1,2-TCA Exempene		1	, 1										1				1	ŀ					1	İ				1.5	0.6	0.006	0.031	na,	ad 0,006			0.11	0.38	na	0.024				06 nd 0.00	06.0 bg 80		0.07
#-Methyl-2-Pentanone		1	, I					ļ	1				-								1					{	- 1	6.71	0.22 nd	4 0.011			,.,,	i		0.26	0.023	na							0.035	0.098
PCE			0.008									0.006 nd 0			4.5	8.9	2.8	nd 0.120			0.130		. .	0,61					d .006 no										nd .006				NO	ne	0,017	nd 0,00
Toduene	0.006	0.027	0.017	0.087	0.11	1.2	6.8 (0.41 0.5	.029 0	0.008 no	d .006 0	0.012 ~0.0	0.00	9 100	130	520	82	320	5.7	0.036	6.9	0,85 0.5	4 2.3	3.5	2.3	0.46				0.006 d 0.006	İ					0.17	0.74 ~1.4	na na	1.7 nd .006	5 0.03			0.00 nd	00.00 ari ave	0.45	0.31
Eshythenzene Sityrene			ı l				1		ŀ				1		1					1					1			0.24	0.07 RC	u 0.000						0.006	~3.5	na	110.000	0.0.	.5 /110 0.0				0.014	0.18
Total Xylenes			(I	ļ																			1						0.066 no						l	0.28	0.071	na	nd .006						0.11	0.1
Retrahydrofuran			nd 0.008					0.2 0.	.026 0	0.01 ~	-0.002 nd	10.006 ~0.0	0.04 ~0.0			0 nd 0.310		0.74	3.4				6 0.3	1 1.4	0.96	1.5	0.03	5.1	1.7 no	d 0.006						~1.7	0.21	na	~6.9						2.2	1.4 0.5
			nd 0.015					166 0	112	0.02	0.002	0.02 0.0	01 60	nd 0.60	0.62 785	6.3 1035		2.3 1273				0.43 21 1.	5 3.4	1 14	9.4	2.3	0.75	39	4.2	0.01	0.04	na	nd	0.02	0.12	0.26 4.9	~24 32	na na	nd .012				07 0.12	2 0 11	0.028 6.0	110
Total Detected VOCs (mg/kg) Detected SVOCs (ing/kg)	0.22	0.11	0.38	U.77	0.20	y Williams	40 U	noo U	7.13 J (0.02 L	7.002 1	7.02 U.I	vi 0.0	علد ا ع المالية المالية) /63	1033	1948	14/3			دند المرافع الإرافية	enigarak	دو _ا و	. 14 898 - 259 - 27		5 3 3 3	USBERT	idajjak Cal	7.4 Versiisaun		0.04 10.04 10.04	11 0											9/15/09/00/57			
Placenol	a distribuis i	<u> </u>		تترندن			aconstitutor i	<u> </u>	<u>compression</u>	estation of the	T			ĺ	T		2-1502-1702-180	ra sas oblekoeks selli		herauter (di	نادا الماسية والمستوادية والمستواد		T			- Horosandoni	T							Γ	1	nd 0.400				nd 0.	400 nd 0.	390			1	
23-Methylphenol		[,																				1	1									1	İ		nd 0.400		nd 0.40			400 .40	200				
#-Methylphenol			i											-							1						~	-0.820	na n	d 0.380			1			~0.180 0.6		0 nd 0.40 0 nd 0.40			400 nd 0. 400 nd 0.		-	1 .		
I.4-Dimethylphenol Benzoic Acid														İ													~	-0.062	na n	d 1.900				[\ v.v	1			1.00	1				1	1
Naphthalene		İ	4										1	- 1											1			-0.058	па п	nd .380					1		nd 0.40							j		
Z-Methylnaphthalene			1		ĺ	1		1													- 1	1		-		1	~	-0.046	па	~0.059					~0.046	~0.110						nd 0.	.420 па	~0.04	4	
Azenaphthene							1					l							1	1								1		1						~0.120	nd 0.40	0 nd 0.40 0 nd 0.40							-	
Palbenzofuran Fluorene			(1															1	[.	ļ		ļ					~0.150		nd 0.40								
Phenauthrene			i = 1		- 1														1						-		-	-0.050	na -	~0,070	~0.063	~0.057	nd 0.400	1	1	0.57		~0.210		6 nd 0	.400 nd 0.					İ
.Aarthracene			(1							1				1						1	0.220								~0.140	~0.044	~0.05	¹		1	~0.0 nd 0				
Pü-n-Butylphthalate Flaoranthene			(1			+																		[]		3	na n	d 0.380	~0.063	nd 9 410	nd 0,400			0.75	~0.190	-0.27	0 ~0.05	7 nd 0	.400 nd 0.			nd 0.4		
Pyrene			(l				1				1		-		1							İ										nd 0.400	1		0.62	~0.140				.400 nd 0.					
Benzo (a) Anthracene			([ļ			1							1	-		- 1-	-0.087		ıd 0.380	1			ł	1	~0.380							170 na			
Chrysene			(1		İ											l					d 0.380						0.55 0.53	~0.086				061 nd 0.		200 na		Ł.	
bes (2-ethylhexyl) Phthalate Benzo (b) Fluoranthene			(-									1								i				1					d 0.380			-			0.53	~0.210				.400 nd 0.					
Benzo (k) Fluorenthene			(1			1				1								1 1				id 0.380			1			~0.240							100 na	nd 0.4	00	
Benzo (a) Pyrene			(-								1						1		-	-0.046	na n	nd 0.380						0.46	~0.08						.180 па			
Mileno (1,2,3-cd) Pyrene	1		(-					1			1					1										Į.					1	1	0.4	~0.040					~0.1	.110 na	nd 0.4	100	
Dichenzo (a.h.) Anthracene Benzo (g.h.i.) Perylene			(1			-	1	1						ļ		- 1			1.	~0.058	na n	ıd 0.380						~0.063	nd 0.40	10 std 0.49 10 ~0.05			-	~0.1	.100 па	nd 0.4	100	
TRANSPORTED TO A STREET OF THE STREET	1	~0.240	(- 1					1					31	83	330	280	120	~2.700	~0.780		~1.1	800 ~0.0	093 ~2.50	ю 17]^	0.050	.1a 11	0.550						5,550	, a	0.03	_			"				
	Ind 0.4001				1			1 -				1	150 na			1400		660			4.2 n							~9.7	na -	~0.095			1	~0.37	rd 0.4	2.7	nd 0 40	0 nd 0.4	00 8	nd C	.400 nd 0	390 -03	.270 na	a nd 0.4	100 4.4	nd 0.4
Pyridine 3-Picoline	nd 0.400 nd 0.400		ļ ļ	- 1	1.1	0.63	1.8	11 0).75	0.47 r	nd .39	па. ∼0.	150 14	. 220								- //						>.,	1111	~0.093	ŀ		1	1.0.0,	225 0.7		1	, ,	vo v	1.0	. 100 110 0		.2.0	110 0.7		1
Pyridine B-Picoline B-Methyl-2-pyrrolidinone	nd 0.400 nd 0.400	40 0.61	~0.160					11 0	0.75	0.47 г	nd .39	na ~0	150 14	13	31	52	64	310	70	8.3		~1	.2 nd 0	.410 13	17	1.6	~0.270	7.7	1111	~0.093					123 0.5				"							
Pyridine 3-Picoline 8-Methyl-2-pyrrolidinone	nd 0.400 nd 0.400 nd 0.400	40 0.61 ~0.31		n	1 0.420 n	10.410 ~	-0.140							13 1.8		52 3400	64	310 3000		590		~1 ~;		.410 13 083 250	17 2600	1.6	~0.270 10	na	na	па	ла 0.19	na 0.06	na nd	na	па	ра	na	na	DB	t	a n	a n	na na	a na	па	na nd

na: not analyzed

B: blank contamination detected in sample

-: quantitation approximate

TABLE 14: SUMMARY OF DETECTED COMPOUNDS IN GROUNDWATER AND OCCURRENCE (Safety-Kleen Chicago Recycle Center)

THE I	D7	P2	D2	P4	Ï	MW-1			MW-2			MW-3		Ми	7_4	MV	V_5	MW-6	МИ	7-7	МИ	'_R	МИ	V_0	MW-	10
WELL	P1 May-91	May-91	P3 May-91	May-91	Nov-91	Dec-93	Feb-94	Nov-91	Dec-93	Feb-94	Nov-91	Dec-93	Feb-94	Dec-93	Feb-94	Dec-93	Feb-94	Dec-93	Dec-93	Feb-94	Dec-93	Feb-94	Dec-93	Feb-94		Feb-94
Sampling Date	мау-91	May-91	мау-91	141ay-91	1007-91	Dec-93	Г <i>ЕО-</i> У4	1VOV-91	LJEC-93	Fe0-94	1VOV-91	Dec-93	reu-94	Dec-95	1'60-94	1/60-93	reu-74	1266-33	1/60-93	1'60-74	Dec-33	1.60-34	L/EL-7J	1.60-34	Dec-93	160-74
Detected Metals* (mg/l)			r	r	, , , , , , , , , , , , , , , , , , , ,												Total California								-	
Arsenic (total)				1	1					0.011												1]	
Barium (total)			1							0.099												ĺ				
Chromium (total)				İ						0.026																
Lead (total)										0.011	!					Į				.		ļ				
Zinc (total)										0.14																
Detected VOCs (mg/l)																										
Chloromethane	эндэгдэглэг ганалаган													0.12	0.11											
Vinyl Chloride					1,1	~.070	0.25	0.26	0.5	nd 10				0.1	0.085	Į.			1.9	~0.240	~0.670	0.67	0.032	0.027	nd 1.000	~0.064
Chloroethane			0.0044	0.024	1.9	1	0.95						İ	nd 0.100	0.038		İ		6.1	~0.320			~0.006	nd 0.010	1.6	1.1
Methylene Chloride	9.5		0.0019	0.012	0.15	nd 0.050	nd .050	12	12	15				1.8	1.5				0.51	nd 0.250	0.63	0.62]	nd 0.500	0.057
Acetone	7.5		0.0017	0,512	0.13	nd 0.100	nd 0.100	4.7	~0.980 B	nd 10.000	0.23	~0.190 B	1.7	~2.800 B	nd 0.050				~5.600 B	2.1	~11.000 B	12	~0.110 B	nd 0.010	~.680 B	0.32
Carbon Disulfide	·				0,13	120 0.100	11110,100	0.75	0.93	1.6	0.23	0.170 B		2.000 B	112 0.050		<u> </u>				11.000 2	**	0.1102	120.010	1000 2	
						ł		1	E												0.72	nd 0.250			!	
1,1-DCE							0.005	0.26	0.31	nd 5.000		}	i	10.050	0.010	0.016	0.004	1	4.6	0.22	1		0.078	0.045	~0.330	0.16
1,1-DCA			0.023	0.096	0.1	nd 0.050	~0.036	0.46	0.62	nd 5.000				nd 0.050	~0.018	0.016	~0.004		4.6	0.32	1.1	1.2		i	~0.330	0.10
1,2-DCE (total)			0.0048	0.021	1.1	0.16	0.1	3.9	~7.5	7.7	nd .050	~0.027	nd 0.100	0.068	0.17	1		1	3	0.63	2	3.2	0.05	0.051		
Chloroform	50		0,0011				<u> </u>	54	~62	100				1.2	0.4		.	ļ		ļ	2.7	nd 0.250	~0.049	0.048	<u> </u>	
1,2-DCA								nd 0.100	0.13	nd 5.000					1					1	10	nd 0.250			0.65	nd 0.050
2-Butanone		}				1		0.7	0.16	nd 10.000				0.21	0.17		1	1	1.7	nd 0.500	2.2	nd 0.500				
1,1,1-TCA			1	0.029	~,016	nd .050	nd 0.050	2.5	1.8	~1.5			İ	1				l			3.1	4.2	~0.008	0.015	~0.250	0.068
CarbonTetrachloride								0.98	0.066	nd 5.000				[<u> </u>	0.82	nd 0.250				
1,2-Dichloropropane		1					1	~0.079	0.17	nd 5.000	1			nd .050	~0.012					1			i i			
TCE			0.0032	0.028	0.057	0.28	nd 0.050	16	15	19				~0.026	nd 0.025		1				3.8	0.82	~0.017	0.007		
1,1,2-TCA]	0.0032	0,020	0,05,	0.20	110 0.050	nd 0.100	0.075	nd 5.000	1			1							,					
Benzene					0.48	0.42	0.31	8,1	15	22	7	3.5	1.4	5.5	3.2	~0.003	~0.003	İ	4.2	0.33	2.3	~0.220	~0.016	0.008	2.3	1.6
	1			ļ	~.039	nd 0.100	nd 0.100	8,1	15		nd 0.100	nd .100	0.39	0.83	0.7	0.003	0.005	1	6.7	1	nd 1.000	~0.380	0.010	0.000	nd 1.000	0.2
4-Methyl-2-Pentanone			1		1	1	!	0.44	0.54	16000	1111 0.100	100	0,39	0.63	0.7	ì			0.7	1	5	1.3			11d 1.000	0.2
PCE	150	ļ	ļ		nd 0.025	0.28	nd .050	0.44	0.54	nd 5.000				1	0.61	<u> </u>	 	ļ	12.000	1,2			}	 		6.2
Toluene	470		1		0.53	0.38	0.15	300	230	140	1.8	0.31	0.42	0.8	0.71			1	~13.000	1.6	18	18			6.6	5.3
Chlorobenzene	ŀ		1				1						ļ]			3	nd 0.250			1	201
Ethylbenzene					nd .025	~ 040	nd .050	0.3	0.44	nd 5.000	1			0.11	0.077	1		1	3.7	0.41	1		1		1.1	0.84
Styrene				1				1									1				ĺ	1			nd 0.50	0.056
Total Xylenes		i	1		nd .025	0.14	nd .050	2	2.7	2.8				0.073	0.047				2.9	~.190	nd 0.500	~0.220			nd 0.500	0.91
Tetrahydrofuran			1	1	2.1	9.2	9.5				3	13	21	20	23	0.015	0.096	6	~22.000	22	~26.000	23	0.51	0.52	~34	31
Trichlorotrifluoroethane			1			ļ		4.2	nd 0.100	1.5				1					nd 1.000	~3.100	nd 1.000	9.1				
Total Detected VOCs (mg/l)	530		0.04	0.21	8	12	11	412	350	311	12	17	25	31	30	0.03	0.10	6	70	32	82	75	0.77	0.72	47	42
Detected SVOCs (mg/l)																							- X - X - X			
Phenol			1		~0.023	~0.014	nd 0.100	I		CONTROL OF THE PROPERTY OF THE	~0.024	nd 0.100	nd 0.200	1											0.062	~0.067
Benzyl Alcohol			1		0.025	0.011	11.00	0.45	nd 1	nd 2	0.02	110 0.100	110 0.200								ļ					
1,2-Dichlorobenzene			1	ļ				nd 2	~0.150	nd 2	:			i							1		i			
11			1		0.046	0.006				1	-40.076	-40 100	0.000	1				1				1	1		~0.025	nd 0.100
2-Methylphenol			1		~0.046	~0.006	nd 0.100	~0.490	~0.220	nd 2	nd 0.076	nd 0.100	~0.089	0.000		1			0.054	0.01	0.150	10.500			~0.023	~0.035
4-Methylphenol			<u> </u>	<u> </u>	~0.014	~0.016	nd 0.100	nd 2	~0.520	nd 2	nd 0.076	~0.016	0.59	~0.360	nd 5		1		~0.064	~0.21	~0.150	nd 0.500			~0.043	~0.033
Isophorone			1												1						~0.100	nd 0.500			00.5	0.07
2,4-Dimethylphenol							1				~0.039	~0.020	nd 0.200	-					~0.053	nd 0.400					~0.046	~0.064
Benzoic Acid	l		1					~1.5	~2.1	nd 10			1						nd 0.25	~1.1			1			
Naphthalene]		1						~0.055	~0.032	nd 0.200						~0.006	nd 0.400					1	
		}	}					1	1								1		1		1	İ		1	nd 0.050	~0.03
4-Chloro-3-Methylphenol	1	i	1	T							~0.008	nd 0.100	nd 0.200													
4-Chloro-3-Methylphenol			1			L	1	nd 2	~0.210	nd 2												1				
4-Chloro-3-Methylphenol 2-Methylnaphthalene						1		110 2			1 0000	~0.010	nd 0.200				1				1		1	1		-
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene								no z			-~0.020	~0.010					1				1		1	1		
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene								no z			~0.020								1				İ			
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran								nu z			~0.010	nd 0.100	nd 0.200													
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene								nu z			~0.010 ~0.056	nd 0.100 nd 0.100	nd 0.200 nd 0.200													
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene					10.000	0.072		no z			~0.010	nd 0.100	nd 0.200										0.001	nd 0 010		
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene Bis(2-ethylhexyl)phthalate					nd 0.060	~0.033	nd 0.100				~0.010 ~0.056 ~0.013	nd 0.100 nd 0.100 nd 0.100	nd 0.200 nd 0.200 nd 0.200				;						~0.001	nd 0.010		
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene Bis(2-ethylhexyl)phthalate Pyridine					~0.053	nd 0.250	nd 0.500	2.4	nd 5	6.5	~0.010 ~0.056 ~0.013 ~0.071	nd 0.100 nd 0.100 nd 0.100 nd 0.500	nd 0.200 nd 0.200 nd 0.200						~3.4	2.5	~33	21				
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene Bis(2-ethylhexyl)phthalate Pyridine 3-Picoline					~0.053 2.7	nd 0.250 ~5.4	nd 0.500 2.3	2.4 290	670	190	~0.010 ~0.056 ~0.013 ~0.071 4.9	nd 0.100 nd 0.100 nd 0.100 nd 0.500 9.9	nd 0.200 nd 0.200 nd 0.200	59	42			~0.660	~26	13	~360	92	~0.140	0.15	~67	68
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene Bis(2-ethylhexyl)phthalate Pyridine 3-Picoline 1-Methyl-2-Pyrrolidinone					~0.053	nd 0.250	nd 0.500	2.4		1	~0.010 ~0.056 ~0.013 ~0.071	nd 0.100 nd 0.100 nd 0.100 nd 0.500	nd 0.200 nd 0.200 nd 0.200		7.1			~0.660 nd 0.040		1						0.75
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene Bis(2-ethylhexyl)phthalate Pyridine 3-Picoline					~0.053 2.7	nd 0.250 ~5.4	nd 0.500 2.3	2.4 290	670	190	~0.010 ~0.056 ~0.013 ~0.071 4.9	nd 0.100 nd 0.100 nd 0.100 nd 0.500 9.9	nd 0.200 nd 0.200 nd 0.200	59		na	nd 0.010	nd 0.040	~26	13	~360	92	~0.140	0.15	~67 ~0.52	
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene Bis(2-ethylhexyl)phthalate Pyridine 3-Picoline 1-Methyl-2-Pyrrolidinone N,N-Dimethylactamide					~0.053 2.7 0.11	nd 0.250 ~5.4 ~0.18	nd 0.500 2.3 0.18	2.4 290 12	670 1100	190 ~74	~0.010 ~0.056 ~0.013 ~0.071 4.9 0.2	nd 0.100 nd 0.100 nd 0.100 nd 0.500 9.9 ~1.4	nd 0.200 nd 0.200 nd 0.200 1.3 530 140	59 13	7.1	na na	nd 0.010	nd 0.040	~26 23	13 19	~360 ~1100	92 200	~0.140 ~0.005	0.15 ~0.007	~67 ~0.52	0.75
4-Chloro-3-Methylphenol 2-Methylnaphthalene 2,6-Dinitrotoluene Acenaphthene Dibenzofuran Fluorene Phenanthrene Bis(2-ethylhexyl)phthalate Pyridine 3-Picoline 1-Methyl-2-Pyrrolidinone					~0.053 2.7 0.11 0.18	nd 0.250 ~5.4 ~0.18 na	nd 0.500 2.3 0.18 ~0.043	2.4 290 12 850	670 1100 na	190 ~74 1800	~0.010 ~0.056 ~0.013 ~0.071 4.9 0.2	nd 0.100 nd 0.100 nd 0.100 nd 0.500 9.9 ~1.4 na	nd 0.200 nd 0.200 nd 0.200 1.3 530 140 21000	59 13 na	7.1 2900	1		nd 0.040 na	~26 23 na	13 19 11	~360 ~1100 na	92 200 53	~0.140 ~0.005 na	0.15 ~0.007 nd 0.010	~67 ~0.52	0.75

^{*} metals analyzed for MW2 only in February, 1994 as part of Appendix I scan

B: Blank contamination detected in sample

na not analyzed

^{~:} quantitation approximate

Figure 1: Site Location

NO. REVISIONS BY LT 1-Limno-Techinc Environmental Engineering 2395 Neven Parkagy, Ann Arbar, MI 48/84	SAFETY-KLEEN CORP, Chicago Recycle Center	PROJECT NO. SKCH1 FIGURE NO.
---	--	-------------------------------

Figure 2:

Site Topographic Map

Safety-Kleen Corp.: Chicago Recycle Center
Cook County, Illinois
(T38N,R14E, Section 5)

a 5ar (Patr 29atr 3

ND. REVISIONS BY
3 5/1/93 SBB
LTI-Limno-Tech, Inc.
Environmental Engineering
2395 Huron Parkway, Ann Arbar, Mi 48184

SAFETY-KLEEN CORP. Chicago Recycle Center PROJECT NO.

(A)

Figure 6. Scaled Vertical Representation of December, 1993 Soil Sampling Locations.

v: VOC sample

s: SVOC sample

m: Metals sample

⁻D: Duplicate sample

p: permeability test sample

Revision Date: 6/23/94

Filenames SKCHWEL, DGN

Clay

Silty Clay

Clayey Silt

Coccoco Gravel

Topsoil

Well Screen

Silt

Static Level (12/16/93)

Vertical Exaggeration: 6:1

Safety Kleen Chicago Recycle Center

Figure 8
A-A' Geological Profile

FILENAME: \SKCHI\LOGS\AA'.DGN

FILENAME: \SKCHI\LOGS\BB'.DGN

FILENAME: \SKCHI\LOGS\CC'.DGN

FILENAME: \SKCHI\LOGS\DD'.DGN

- → MW1-3 (Canonie, 1991)
- -**♦** SB4/MW4-SB1Ø/MW1Ø (LTI, 1993)
- O P1-3 (RMT, 1991)
- B-series (Canonie, 1991)

APPROXIMATE SCALE 60 FEET

SAFETY KLEEN SITE Chicago Recycle Center

Figure 12 Thickness of Upper FILL Zone (Feet)

Filenamer SKCHWELLDGN

- → MW1-3 (Canonie, 1991)
- -\$\frac{1}{2}\$-\$\SB4/MW4-\$\SB1\textit{\textit{0}}\/\textit{MW1\textit{0}}\/\textit{0}}\$
- O P1-3 (RMT, 1991)
- B-series (Canonie, 1991)

Elevations of B1-B8 surveyed 1991 Elevations of MW1-MW10 surveyed 1993

APPROXIMATE SCALE

60 FEET

SAFETY KLEEN SITE Chicago Recycle Center

Figure 13

Elevation of

Top Clayey SILT/Silty CLAY Zone

- ♠ MW1-3 (Canonie, 1991)
- SB4/MW4-SB1Ø/MW1Ø (LTI, 1993)
- O P1-3 (RMT, 1991)
- B-series (Canonie, 1991)

Elevations of B1-B8 surveyed 1991 Elevations of MW1-MW10 surveyed 1993

APPROXIMATE SCALE

SAFETY KLEEN SITE Chicago Recycle Center

Figure 14

Approximate Elevation of

Top CLAY Layer/

Base Saturated Zone

Filename: SKCHWEL.DGN

Revision Date: 6/23/94

→ MW1-3 (Canonie, 1991)

SB4/MW4~SB1Ø/MW1Ø (LTI, 1993)

O P1-3 (RMT, 1991)

B-series (Canonie, 1991)

Direction of Groundwater Flow

APPROXIMATE SCALE

60 FEET

SAFETY KLEEN SITE

Chicago Recycle Center

Figure 15
POTENTIOMETRIC SURFACE MAP
DEC. 16, 1993

Filenamei SKCHWEL,DGN

Revision Date: 6/23/94

- 🕀 MW1~3 (Canonie, 1991)
- SB4/MW4-SB10/MW10 (LTI, 1993)
- O P1-3 (RMT, 1991)
- B-series (Canonie, 1991)

____ Direction of Groundwater Flow

APPROXIMATE SCALE
60 FEET

SAFETY KLEEN SITE Chicago Recycle Center

Figure 16
POTENTIOMETRIC SURFACE MAP
FEBRUARY 14, 1994

- → MW1-3 (Canonie, 1991)
- 🕀 SB4/MW4-SB1Ø/MW1Ø (LTI, 1993)
- O P1-3 (RMT, 1991)
- B-series (Canonie, 1991)

Direction of Groundwater Flow

APPROXIMATE SCALE ____ 60 FEET

SAFETY KLEEN SITE Chicago Recycle Center

Figure 17 POTENTIOMETRIC SURFACE MAP MAY 25, 1994

APPENDIX A:

SK-CRC RFI Phase I Personnel Qualifications

Summary of Qualifications for LTI Staff Assigned to the Safety-Kleen CRC Phase I RFI

Name	Project Role		Degrees	Professional Experience (years)
			Old Familian size	20
Paul F. Freedman, P.E.	Project Administrator	B.S.E.	Civil Engineering	1
		M.S.E.	Environmental Engineering	9
Gregory W. Peterson	Project Manager	B.S.E.	Civil Engineering	1
		B.S.E.	Environmental Enginering	
Scott B. Bell	Project Engineer	B.S.	Environmental Studies	1
		M.S.	Civil Engineering	
Robert J. Betz	Project Scientist	B.S.	Biological Sciences	4
	•	M.S.	Environmental Health Sciences	
Jing Chen	Assistant Hydrogeologist	B.S.	Hydrogeology	7
J., 9		M.S.	Environmental Studies	
Joyce Dunkin	Project Hydrogeologist	B.S.	Mathematics	8
Joyco Dankiii	, , , , , , , , , , , , , , , , , , , ,	M.S.	Geology	
		M.S.	Environmental Engineering	
Jonathan B. Farr	Assistant Geologist	B.S.	Geology	1
	, (3010tant 33310g.31	B.S.	Computer Science	1
Brian Lord	Environmental Technician	B.S.	Industrial Hygiene	1
John T. Peterson	Environmental Technician	B.S.	Biology	4
1	Project Hydrogeologist	B.S.	Geologic Engineering	8
James Richards	Fillege Hydrogeologist	M.S.	Environmental Engineering	
		c.Ph.D.		
	Desires Carinage	B.S.	Biology	9
Catherine Whiting	Project Engineer	M.S.	Civil Engineering	

LAND AND CONSTRUCTION SURVEYS 35W388 MILLER ROAD DUNDEE, ILLINOIS 60118 (708) 428-3456 JOHN D. REBIK & Associates

June 16, 1994

2395 Ms. Joyce I LIMNO-TECH Ann Arbor, Huron Duncan Michigan 48104 INC. Parkway

Dear Ms. Duncan:

ur r firm has Illinois a and Wisconsin. been in business our since Surveying 1967. We our licensed expertise includes:

- Boundary, Topographical and Architectural Surveys
- Baselines and Benchmarks
- A.L.T.A./A.C.S.M. Land Title Surveys
- Condominium Surveys
- Subdivisions (Residential and Commercial)
- Aerial Survey Control
- 4004B007 Wetland Delineation
- Mass Earthwork and utility Staking
- Land Planning
- 10) As-Built Locations and Elevations О Н Monitoring Wells

hesitate to our firm can be call. o fi any further assistance, please do not

JDR/dh

Jøhn

.

Rebik,

P.L.S

@ @ 0

693 PLYMOUTH AVENUE, N.E. . GRAND RAPIDS, MICHIGAN 49505 . PHONE: 616/459-1090

QUALIFICATIONS

STATEMENT OF QUALIFICATIONS

PROFESSIONAL QUALIFICATIONS

Michigan. All of our projects are handled from this office. Testing Consultants, Inc. We are located at 693 Plymouth Avenue, NE in Grand Rapids, was a drilling department within our affiliate geotechnical engineering firm, Materials Mateco Drilling Company, a legitimate woman owned small business, originated as a corporation in the State of Michigan in 1974. Prior to 1974, Mateco Drilling Company

Michigan and the City of Kansas City, Missouri. Mateco Drilling Company holds woman owned business certificates from the State of includes the Consultants and Contractors Association. Association, Michigan Petroleum Association **National** Drillers Contractors Professional organization representation Association, and the Mîchigan Environmental National Groundwater

installation and recovery well installation. environmental drilling projects including specialized in-situ soil testing, monitoring well Since 1974, Mateco Drilling Company has performed a wide range of geotechnical and States of Michigan, Indiana, Ohio, Illinois, Wisconsin, Missouri and New York. These types of projects are performed in the

Major contracts have included test drilling and monitoring well installation for the Corps of Engineers Detroit District 1984, 1985, 1986, 1987, 1988 and 1989 blanket contracts. Mateco Drilling Company was approved to work on U.S. EPA Superfund sites in 1983 and since has successfully completed work at many sites.

welder and six administrative people for a total of 26 employees At present Mateco Drilling Company employs nine crew chiefs, ten driller's assistants, one

DRILLING EQUIPMENT

General 550 drill rig trailer-mounted	*CME 850 HT All-terrain track drill	CME 850 All-terrain track drill	CME 850 All-terrain track drill	*CME 750 HT all-terrain rubber-tired	*CME 750 HT all-terrain rubber-tired	*CME 55 HT truck-mounted	*CME 75 HT tandem axle truck-mounted	CME 45C trailer-mounted skid	Model CME 45C trailer-mounted skid	
1992	1993	1987	1985	1992	1989	1991	1987	1993	Year 1990	

^{*}HT - refers to high-torque

truck mounted machine, two CME 750 high torque all terrain rubber tired machines, one trailer mounted skid drills, one General 550 portable machine, one CME 55 high torque Mateco Drilling Company operates ten drilling machines. CME 75 high torque truck mounted machine and three CME 850 track machines. This includes two CME 45

model drills. This gives us the capability to run larger diameter augers to greater depths. Company (CME), the manufacturer, increasing the torque over and above the standard The high torque refers to the machine being modified by Central Mine Equipment

winch lines, wireline winch lines and quick connect spindle adaptor assemblies. hammers, hydraulic rod holder and breakout wrenches, Moyno grout pumps, heavy duty All of our machines are equipped with the patented CME safety brakes, 140 lb. automatic

drilling to rotary drilling without lengthy drill chuck and kelly switchovers The quick connect spindle adaptor assembly allows us to change from hollow stem auger

with clearance as low as 12 feet. tower in half for drilling in limited overhead clearance. This drill will allow us to operate The CME 45 skid drills are specially designed with a quick mast disconnect to separate the

The General 550 drill rig will allow us to drill in areas of 8 feet of overhead clearance

The CME 45, CME 850 and CME 750 are also set up for angle hole drilling

owned by Mateco Drilling Company that is available for use on projects. matched to the particular type of drilling condition. The following is a list of equipment equipment and supplies. many special drilling requirements. This has been accomplished by our specialized drilling Mateco Drilling Company has provided drilling services to a wide variety of clients under The purchase of this vast inventory enables the equipment to be

60 ft	100 ft	100 ft	200 ft	300 ft	200 ft	400°ft	300 ft	400 ft	440 ft	300 ft	Quantity
10 1/4" I.D. Hollow Stem Auger	8 1/4" I.D. Hollow Stem Auger	6 1/4" I.D. Hollow Stem Auger	2 3/4" I.D. Hollow Stem Auger	3 3/4" I.D. Hollow Stem Auger	3 1/4" I.D. Hollow Stem Auger	4 1/4" I.D. Hollow Stem Auger	4 1/4" I.D. Extra Heavy Duty Auger	3 Inch Flush Joint Casing	4 Inch Flush Joint Casing	6 Inch Flush Joint Casing	Equipment Description

2 Bosch Jackhammers 2 MP-1 Grundfos Pumps with Packers 4 1/4" I.D. Screened Augers	•		10 Water Tanks 2 1,500 Gallon Site Wate 9 4 Wheel 1-Ton Trucks 1 1993 Ford F-800 20' S	3 3L8 Moyno Pumps 4 John Bean Pumps 4 Shallow Well Deve 5 3L8 Moyno Pumps 6 John Bean Pumps 7 To 8" Rotary Dri		Samples 4 CME Continuous Sa: (3 1/2" O.D. X 3" I.I and 3" O.D. X 2 1/2" 100 ft 4" Solid Stem Auger 40 ft 7" Solid Stem Auger	Ouantity 50 ft 50 ft 12 1/4" I.D. Hollow Sten NQ Wireline Drill Rod MQ Wireline Drill Rod S' NX Core Barrel - Long 1 10' NX Core Barrel - Ch Dutch Cone Pentrometer Piston Sampling Heads fo Samples Piston Sampling Head fo
well Grouter miners os Pimps with Packers	with Deep Rock Pump Capability Ford Aeromax LNT9000 Tractor, with Detachable Gooseneck Trailer	Ditch Pumps Borehole Packer Testing Equipment Rorehole Double Packer Testing Fauipment	Water Tanks 1,500 Gallon Site Water Tanks 4 Wheel 1-Ton Trucks 1993 Ford F-800 20' Stake Body Truck	3L8 Moyno Pumps 3L8 Moyno Pumps John Bean Pumps Shallow Well Development Pumps 2" to 8" Rotary Drilling Bits	4" HW Christensen Casing Advancers 3" NW Longyear Casing Advancers Steam Cleaners and Decontamination Equipment NW Rod AW Rod AW Rod	Samples CME Continuous Sampling Systems (3 1/2" O.D. X 3" I.D., 6" O.D. X 5 1/2" I.D., and 3" O.D. X 2 1/2" I.D.) 4" Solid Stem Auger 7" Solid Stem Auger	Equipment Description 12 1/4" I.D. Hollow Stem Auger NQ Wireline Drill Rod HQ Wireline Drill Rod 5' NX Core Barrel - Longyear 10' NX Core Barrel - Christensen Dutch Cone Pentrometer with 20 Meter Rod Piston Sampling Heads for 3" Thin Wall Tube Samples Piston Sampling Head for 5" Thin Wall Tube

		. 12 12	Quantity 1
Semi Storage Trailer	Menard Fressure Meter PID Meter	Vane Shear Testing Equipment	Equipment Description Level B Cascade Systems

Mateco Drilling Company also has full and half mask respirators with cartridges along with various dermal and other personal safety protection available.

DRILLING METHODS

Auger Drilling

the splitspoon sampler. The splitspoons are used in accordance with ASTM and EM steel or stainless steel material. Brass, plastic or stainless steel liners are often used within inch O.D. splitspoons, 3 inch O.D. splitspoons, 3 1/2 inch O.D. splitspoons in standard Within the hollow stem auger Mateco Drilling Company can provide soil sampling using 2 8 1/4 inch I.D., 10 1/4 inch I.D. and 12 1/4 inch I.D. hollow stem augering methods Mateco Drilling Company provides a wide range of drilling methods. They include auger drilling in 2 1/4 inch I.D., 3 1/4 inch I.D., 3 3/4 inch I.D., 4 1/4 inch I.D., 6 1/4 inch I.D.,

I.D. 6 1/4 inch I.D. hollow stem augers. This system is very effective in providing These samplers are available for the use in the 3 1/4 inch I.D., 3 3/4 inch I.D., 4 1/4 inch Soil samples can also be collected through the use of our CME continuous soil samplers undisturbed samples of very hard clays for geotechnical laboratory testing. continuous soil samples to define or locate thin sand lenses and provide relatively

duty hollow stem augers, 100 feet with 10 1/4 inch I.D. hollow stem augers and 50 feet Depth capacity in auger drilling varies depending on soil types, groundwater and auger size. Mateco Drilling Company has drilled to 200 feet with 4 1/4 inch I.D. extra heavywith 12 1/4 inch I:D. hollow stem augers. Our other sized augers have been to beyond 100 feet and no greater than 200 feet

Mud Rotary and Air Rotary

inch diameter to 12 inch diameter. Again, soil samples are provided through the use of splitspoon soil samplers or continuously through our Longyear geo-barrel. Mateco Drilling Company provides mud and air rotary drilling in hole sizes ranging from 2

This mud rotary drilling and sampling method allows us to drill and continuously sample up to very hard soils beyond the depth capacity of hollow stem augers.

inches in diameter and up to 12 inches in diameter is 200 feet. Mateco Drilling Company has drilled 6 inch mud rotary holes to 250 feet and has drilled to 300 feet with the Longyear geo-barrel. Our depth capacity with hole sizes larger than 6

Rock Coring and Rock Drilling

Mateco Drilling Company has extensive capabilities and experience in rock coring and

inner packers which indicate when there is core blockage in the inner barrel and notifies splits that can be pumped out for visual core classification. These systems also have dual barrel and not grind or loose rock sample recovery. the operator due to increase in fluid pressure. Wireline rock coring is provided in HQ size (4 inch hole) and NQ size (3 inch hole) Our HQ and NQ wireline systems are set up with optional inner stainless steel This allows the operator to reset the core

to the top of bedrock to obtain core samples of the underlying bedrock. Corps of Engineers. extensively on the Soo Locks located in Sault Saint Marie, Michigan for the U.S. Army off unstable sidewall conditions or contamination. We have used the HW casing advancer advancers to extend temporary flush threaded steel casing into bedrock or boulders to seal Mateco Drilling Company provides HW (4 inch I.D.) and NW (3 inch I.D.) casing This project required us to drill 50 feet through stockpiled boulders

medium. Fluid rotary is used in conjunction with our rock roller bits. down hole hammers are very efficient in advancing a hole in bedrock using air as a fluid Standard rock drilling is performed using air rotary or fluid rotary drilling methods.

hole size. Our depth capacity in bedrock larger than 6 inch and smaller than 12 inch is 200 Mateco Drilling Company's depth capacity in rock drilling is 500 feet in 3 inch to 6 inch

In-Situ Testing

special down hole testing for geotechnical and environmental applications Through the use of specialized down hole equipment Mateco Drilling Company provides

This in-situ test gives an indication of the materials in-situ permeability Our dual packer assemblies are used for pump-in permeability testing in bedrock and soils

sludges in an effort to determine if the material would remain in-place during remedial place shear strengths of soft cohesive materials and sludges. Mateco Drilling Company capping operations. has used this device extensively in determining in-place strength parameters of paper Vane shear tests are performed by Mateco Drilling Company to give an indication of in-

areas of soft or unstable soils or sludges where further drilling of boreholes would be expensive. Dutch cone pentrometer testing is performed by Mateco Drilling Company to better define The cone pentrometer gives continuous strength readings of the material being

Vertical Water Sampling

and temporary well methods. We have used each method extensively with various drilling Company. Our capabilities include screened auger, dual packer in bedrock, hydropunch II Vertical groundwater sampling is performed by various methods by Mateco Drilling

Our depth capacity for vertical water sampling in soils is 200 feet and 500 feet in bedrock.

Well Installations

calculating volumes and determining consistency in the material used. Proper well head annulus sand packing and grout placement is performed by crews knowledgeable of well material is exercised by all of Mateco Drilling Company crew members. industry sites and large Superfund sites. The extreme care in handling and placement of Mateco Drilling Company is well qualified for the installation of monitoring wells. completion is performed flush with grade or above grade. have been installed in sizes ranging from 1 inch diameter to 12 inch diameter on private Proper well

to 4 inch submersible pumps, air lift, hand pumping and bailing. Mateco Drilling Company is experienced in well development using surge blocks, 2 inch

Decontamination

supply through the use of portable generators provided for the containment of fluids if required. Mateco Drilling Company operates ten (10) steam cleaning units with an onsite power Portable decontamination pads are

SUMMARY OF PROJECTS

Wurthsmith Air Force Base: (3602-92) October, November, December 1992

Client: ICF Technology, Client Contact: Mr. Doug Laymon Dollar Value: \$66,564.40

Mateco Drilling Company mobilized a CME high torque 750 all terrain rubber tired drill galvanized riser were installed. 100 feet. Monitoring wells consisting of 4 inch diameter stainless steel screens and 4 inch rig to this site. Vertical water sampling was performed using temporary well methods to

equipment was required with the collection of fluids and drill cuttings. The level of personal protection was Level D and Level C. The decontamination of

Sand Lake, Michigan: (3603-93) November, December 1992 and January 1993 Client: ABB Environmental Services, Inc., Client Contact: Mr. Michael O'Hearn

Dollar Value: \$68,041.77

depths of 100 feet. The level of personal protection was Level D. The deconts of equipment was required along with the collection of all fluids and drill cuttings. splitspoon soil samplers to depths of 140 feet using hollow stem auger and rotary drilling and temporary well methods to depths of 100 feet. Soil sampling was performed with The work included vertical groundwater sampling with a hydropunch II, screened auger Mateco Drilling Company mobilized two of our truck mounted drilling rigs to this site. Monitoring wells consisting of 2 inch diameter well materials were installed to The decontamination

3. Port Clinton, Ohio: (3621-92) November 1992

Client: McLaren Hart, Client Contact: Mr. Garry Stevenson,

Dollar Value: \$16,319.25

screen placement. The level of personal protection was Level D. The decontamination of continuous soil sampler to locate thin layers of wet sand in determining monitoring well clearance work. The drilling consisted of soil sampling continuously with the CME rig to this site along with a CME 45C trailer mounted skid drill rig for low overhead Mateco Drilling Company mobilized a CME high torque 750 all-terrain, rubber tired drill equipment was required

Electro Voice Facility: (3625-92) November, December 1992 Client: SAIC, Client Contact: Mr. John C. Morrison, Dollar Value: \$31,667.50

extensive decontamination procedures. This project involved over 100 shallow soil borings in a research project with the U.S. Continuous soil sampling was performed using stainless steel splitspoons and The level of personal protection was Level D and

Dollar Value: \$40,000.00 Dura Plating: (3629-92) December, January, March, April and May 1993 ABB Environmental Services, Inc., Client Contact: Mr. Michael O'Hearn

areas and residential areas. The level of personal protection was Level D and Level C Monitoring wells were installed consisting of 2 inch diameter wells completed in traffic auger and This project involved outside borings performing vertical water sampling with a screened inside low overhead clearance borings with splitspoon soil sampling,

and July 1993. Motorwheel Disposal Facility: (3654-92) January, February, March, April, May, June

Client: Fishbeck, Thompson, Carr & Huber, Client Contact: Mr. Ken Wiley

Dollar Value: \$242,327.50

shear testing was also performed. Mateco Drilling Company mobilized three drill rigs to this site. Monitoring wells consisting of 2 inch galvanized riser were installed to depths of 110 feet. temporary well methods. Wireline rock coring was performed to depths of 150 feet continuous soil sampler was required to define soils for slurry wall construction. mobilized to gain access to soft wet areas where drilling of soil borings using the CME Vertical water sampling Two ATV drill rigs were was performed

aquifer. HQ wire line coring and performing pump-in and pump-out testing in the regional bedrock In 1992 Mateco Drilling Company was also on this site drilling to depths of 300 feet using

was required The level of protection was Level D through Level B. The decontamination of equipment

Dollar Value: \$60,000.00 Client: ABB Environmental Services, Inc., Client Contact: Ms. Kim Kesler-Arnold United Technologies: (3665-93) February, March 1993

water sampling with the hydropunch II was performed inside this facility overhead clearance was low and removal of all exhaust fumes was essential. drill rig was used to drill in difficult to access areas for soil borings and monitoring well Mateco Drilling Company mobilized a bulldozer, ATV track drill and a skid mounted drill installations. The bulldozer was used to make roadways into former lagoons. The skid mounted drill rig was used inside the very clean facility where

personal protection was Level D. Also vapor extraction wells and monitoring wells were installed at the site. The decontamination of all equipment was required The level of

Client: NUS Halliburton, Client Contact: Mr. Jim Arduine, Grand Ledge Parsons Chemical: (3671-92) March, April and May 1993

Dollar Value: \$40,000.00

off the potential for cross contamination. into the bedrock using 12 1/4 inch I.D. hollow stem augers. This was performed to seal Mateco Drilling Company mobilized an ATV drill rig to the site to perform soil borings and monitoring well installations. Ten inch black steel casing was installed permanently

stem auger and water rotary drilling methods. Two inch diameter monitoring wells were installed at the site. The borings were further advanced through the 10 inch casing with 4 1/4 inch I.D. hollow

Level D. The decontamination of the equipment was required. The level of personal protection was

9. Kansas City - Hilton: (3703-93) May and June 1993

Woodward Clyde Consultants, Client Contact: Mr. Richard Moberly

Dollar Value: \$28,000.00

off assembly was used successfully in recovering good samples of the soft shales and shear testing of cohesive soils. Our HQ wireline coring system with the dual packer shut soil borings involved splitspoon sampling, wireline rock coring of soft shales and vane defining zones of incompetent limestone. This project involved drilling on land and water for proposed riverfront development. The

O. Barrels Incorporated: (3704-93) May and June 1993 Client: Conestoga-Rovers and Associates, Limited,

Client Contact: Mr. Renato Pasqualoni, Dollar Value: \$49,619.50

for this site. We were required to have our PID meter onsite to the monitor the breathing Mateco Drilling Company was responsible to write and maintain a health and safety plan zones during drilling.

protection was Level D and Level C. The decontamination of all equipment was required Soil borings were performed to collect soil samples and install 2 inch diameter monitoring Extensive splitspoon decontamination was required. The level of personal

Recovery Well Installation & Pump Testing:

purge water. installation with long-term pump testing with storage management and treatment of the Mateco Drilling Company has performed drilling projects involving recovery

Large Barge & Tug Soil Water Drilling:

A number of projects have been drilled on the Great Lakes for the U.S. Army Corps of Engineers and the U.S. Coast Guard. Soils drilling has been performed to depths of 15' to 150' depths.

Small Lagoons and River Drilling:

Access to small lagoons and rivers is also available through Mateco Drilling Company.

HEALTH AND SAFETY

All Mateco Drilling Company employee's are fully trained in accordance with OSHA safety and training requirements including eight hour refresher courses.

manual on safety and respiratory protection program. All of our employee's are required to comply with our substance abuse policy, in-house

Roy F. Weston, Inc.

Analytics Division

QUALIFICATIONS

equipment, the WESTON laboratories employ the analytical QA/QC and reporting protocols of soil. sediment, sludge, with a collective capacity to analyze several thousand samples each month of water, wastewater, parameters. WESTON®'s Analytics Division is a leader in the field of environmental analytical chemistry EPA CLP, SW-846, Methods for Chemical Analysis of Water and Wastes, NIOSH and With a highly experienced staff of trained professional chemists and state-of-the-art wastes, and air for an extensive array of organic and inorganic

WESTON'S LABORATORY CERTIFICATIONS

pesticides/PCBs, metals, and cyanide in soil and water matrices. contracts to provide CLP level data for analyses outside the scope of the CLP RAS Statements in performing these protocols. packages Laboratory Program to provide organic and inorganic TCL analyses and are highly experienced WESTON's Lionville and Stockton laboratories both have participated in the U.S. EPA Contract in accordance with EPA WESTON's laboratories routinely analyze samples and prepare litigation-quality data All three laboratories hold Special Analytical Services (SAS) protocols for volatile, semivolatile, organochlorine

to provide analytical services to the U.S. Army (USATHAMA), the U.S. Air Force, U.S. Navy certifications is shown in Table A. The WESTON Laboratories are also certified or approved (NEESA), the Corps of Engineers, DOE, and HAZWRAP. hazardous wastes). The list of states where WESTON has current or pending laboratory programs to provide environmental analytical chemical services (water, wastewater, and WESTON's Laboratories are currently certified or approved in 37 of the 40 states that have

proficiency analytical test (PAT) samples. The WESTON Auburn Laboratory has been certified by the American Industrial Hygiene Association (AIHA) for the analysis of metals, solvents and asbestos, and routinely analyzes

has held a similar contract with the State of Alaska. contamination assessments at known or contractor to Pennsylvania, New Jersey, and Virginia to provide analytical services supporting holds similar contracts with the States of Illinois and New Jersey, and the Stockton Laboratory investigations, and permit (NPDES) required monitoring activities. The WESTON Lionville Laboratory is under contract to the State of New York and is a past suspected hazardous The Gulf Coast Laboratory waste sites, enforcement

WESTON's laboratories participate in numerous Federal, state, and industrial audit and

WESTON Analytics Division Certification Status April 1994

Certified		Certified	Drinking Water	Louisiana
Certified		Certified	Drinking Water	Kentucky
Certified Certified Certified	Pending Pending Pending	Certified Certified Certified	Drinking Water Wastewater Hazardous Waste	Kansas
Certified		Certified	Drinking Water	Iowa
Certified		Pending	Drinking Water	Indiana
Certified Certified	Not Pursued Not Pursued	Not Pursued Not Pursued	Drinking Water Microbiology	Illinois
Certified	Certified	Certified	Drinking Water	Idaho
Not Pursued	Not Pursued	Not Pursued	Drinking Water	Hawaii
Not Pursued	Not Pursued	Not Pursued	Drinking Water (Micro only)	Georgia
Certified Certified	Pending QAP	Certified Pending QAP	Drinking Water ELAP (DW/WW/HW)	Florida
Certified		Certified	Drinking Water	Delaware
Certified Certified Certified	Pending Pending Pending	Certified Certified Certified	Drinking Water Wastewater Trade Waste/Soil	Connecticut
Certified		Certified	Drinking Water	Colorado
Certified Certified Certified Not Pursued	Certified Certified Certified Not Pursued	Certified Certified Certified Certified	Drinking Water Wastewater Hazardous Waste Dioxin	California
Certified Certified		Certified Certified	Wastewater Solid/Haz. Waste	Arkansas
Certified	Certified Certified Certified	Certified Certified Certified Certified	Drinking Water Wastewater Hazardous Waste Air	Arizona
Not Pursued	Certified	Certified	Drinking Water	Alaska
Certified		Certified	Drinking Water	Alabama
Gulf Coast	Stockton	Lionville	Certification Category	State

Rhode Island Drinking Water Wastewater Hazardous Waste	Pennsylvania Drinking Water Radon	Oregon No Program	Oklahoma Wastewater Hazardons Waste	Ohio No Program	North Dakota Drinking Water Wastewater	North Carolina Drinking Water Wastewater	New York Drinking Water Wastewater Hazardous Waste Air/Emissions CLP	New Mexico No Program	New Jersey Drinking Water Wastewater Hazardous Was	New Hampshire Drinking Water Wastewater	Nevada Drinking Water Wastewater	Nebraska No Program	Montana Drinking Water	Missouri Drinking Water	Mississippi No Program	Minucsota Drinking Water Wastewater	Michigan Drinking Water	Massachusetts Drinking Water Wastewater	Maryland Drinking Water	No Pı	State Category
	Eq	iii	Waste		Water	Water	Water ter us Waste ssions	ram	Drinking Water Wastewater Hazardous Waste ¹	Water	ter	тат	Water	Water	уam	g Water ater	g Water	g Water ater	g Water	gam	Category
Certified Certified Certified	Certified Certified		Certified Certified	•	Certified Certified	Certified Certified	Certified Certified Certified Certified Certified		Certified Certified Approved	Certified Certified	Certified Certified		Certified			Certified Certified	Certified	Pending Pending	Certified		Libaville
Pending All Categories	Certified Not Pursued				Certified Certified		Certified Certified Certified Not Pursued		Certified Certified Approved	Certified Certified	Certified Certified							Certified Certified			Stockton
Not Pursued	Certified Not Pursued	•	Certified Certified		Certified Pending	Certified Certified	Certified Certified Certified Certified Not Pursued		Certified Certified Approved	Certified Certified	Certified Certified		Certified	•		Certified Certified	Certified	Certified Certified	Certified		Galf Coast

State	Certification Catagory	Liouville	Stockton	Gall Coast
South Carolina	Drinking Water Wastewater Hazardous Waste	Certified Certified Certified	Certified Certified Certified	Certified Certified Certified
South Dakota ²	Drinking Water Wastewater Hazardous Waste	Case-by-Case		Case-by-Case
Tennessee	Drinking Water UST	Certified		Certified Approved
Texas	No Program			
Utah	Drinking Water Wastewater Hazardous Waste	Certified Certified Certified	Certified Certified Certified	Certified Certified Certified
Vermont	No Program	•		
Virginia	Drinking Water	Certified		Certified
Washington	Wastewater	Certified	Certified	Certified
West Virginia	Drinking Water	Certified		Certified
Wisconsin	Drinking Water Wastewater Hazardous Waste UST	Certified Certified Certified Pending	Certified Certified Certified	Certified Certified
Wyoming	Drinking Water	Certified		Certified

2South Dakota does not have a formal certification program, however, approval may be obtained on a project-by project basis.

New Jersey does not have a formal Hazzardous Waste Certification Program that offers laboratory documentation of certification. However, New Jersey will allow laboratories to analyze waste samples if the laboratory is certified for those parameters in the Wastewater Program and if the methods of analyses are comparable. New Jersey expects to have a Hazardous/Solid Waste Program established within the next 1 - 2 years.

** Attachment I **

Florida submitted in August 1993. Requested revisions to this document were submitted in Gulf Coast's QAPP has been "Approved Pending Revisions", which was originally

December 1993. The laboratory is permitted to perform analytical work under this

Georgia A new drinking water program has been initiated for laboratories to participate. However, reciprocal certifications to out-of-state laboratory's will not be offered at the

Illinois As of July 28, 1992, Illinois only certifies adjacent states for Drinking Water Analyses

Maine Will certify Out-Of-State (OOS) labs if their Home State recognizes Maine in a

reciprocal agreement.

Mississippi There is a DW Program available, BUT, labs must analyze samples from a Mississippi

Water Supply Co. MS will not accept WS PE Results.

Nebraska State Labs perform all DW analysis.

New Mexico Only certified labs who are certified by the Regional USEPA Office

Ohio analytical work on public drinking water. Certification is not required to perform work DW Reciprocal Program discontinued on 2/23/90. In-state laboratory's perform all

in the State of Ohio, for drinking water or wastewater.

Oregon Only certifies adjacent states or those certified by the Utah Department of Health.

South Dakota DW Program Pending approval by State Legislation. Certification may be approved on

a project-by-project basis

Texas Programs in review, sent letter of interest.

Vermont is presently being formed to discuss the option of offering certification to OOS labs. Only certifies in-state labs due to the availability of limited resources. A committee

Washington DW Program is initially certifying only in-state laboratories at the present time

WESTON Analytics Division Current Contract Approvals April 1994

3M	EPA SAS Program	HAZWRAP	USATHAMA	U.S. Army Corps of Engineers	U.S. Dept. of Agric.	U.S. Navy	U.S. Air Force	State "Superfund"	Contracts
Yes	Ϋ́α	Yes	Yes	Yes	Yes	Yes	Yes	PA DER NYS DEC	Lioaville
Yes	Yes			Yes	Yes	Yes	Yes		Stockton
Yes	Yes			Yes	Yes	Yes	Yes	Illinois, State Funded Illinois, Federal Funded New Jersey	Gulf Coast

A CONTRACTOR

performance sample programs for organic and inorganic analyses, including participation in the U.S. EPA Water Pollution (WP) and Water Supply (WS) Studies. including regular

NRC LICENSE - LIONVILLE

samples which contain up to 1000 nCi/g of tritium. permits receipt of samples which contain up to 100 nCi/g or 100 nCi/ml with an on-site storage laboratory space to the receipt, preparation, and analysis of these samples. which also contain radioactive materials). to analyze mixed waste samples (i.e., samples that are analyzed for chemical contamination and The Analytics Division's Lionville Laboratory is licensed by the Nuclear Regulatory Commission limit of 100 mCi. The most recent license amendment allows the receipt and handling of WESTON has dedicated 10,000 square feet of WESTON's license

A copy of WESTON's NRC license amendment is available upon request. WESTON's Corporate Health and Safety Program and the requirements of our NRC License This facility is operated in strict conformance with the health and safety requirements of

to one of several highly-qualified firms under standing agreements. WESTON does not perform radiochemical analyses, but routinely subcontracts those analyses

APPENDIX B:

SK-CRC Phase I RFI Certifications

Safety-Kleen Corp. RFI Phase I Rep I Report

Log No. B-121

Upon completion of Phase I of the RFI, this statement is to be completed by both a responsible officer of the owner or operator (as defined in 35 IAC 702.126) and by the registered professional engineer overseeing all work associated with the investigation. Submit one copy of the certification with original signatures and three additional copies.

a system designed to assure that qualified personnel properly gather and evaluate the information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of m possibility of fine and knowledge and belief, true, accurate, significant penalties for submitting RFI Phase I activities at the facility described in the RFI Phase I Workphave been completed in accordance with the specifications in the approved Workplan. I certify under penalty of law that this document. Workplan. I certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance imprisonment for and complete. I false information, knowing violations. I am aware that there including I Workplan of my with are

D00545069

USEPA ID Number

Signature of Owner/Operator Stop 1 Mas 6/29/44 Date

Signature of Registered P.E Date

> Facility Name Recycle Courtes

Name Scott and Title . اها Fore Health

Safety

Name of Registered P.E. and Illinois
Registration Number

Mailing Address of P.E.:

Beleway **Rolgh**

LWE:MH:sf/sp/634Y,15

Registered P.E.'s Seal:

field andidion modifications to the workplan Please undergramme obstructions) Some minor (e.s. drilling based on actual beat ions

9 Į **(**\)

Safety-Kleen Corp. - CRC RFI Phase I Report Laboratory Certification Log No. 8-121

Report. Upon completion of Phase I of the RFI, this statement is to be completed by both a responsible officer of the owner or operator (as defined in 35 IAC 702.126) and (2) a responsible officer (as defined in 35 IAC 702.126) of the laboratory which conducted the chemical analyses required as part of Phase I of the RFI. The original of this statement shall accompany the original certification statement for the overall Phase I activities and the RFI Phase

conducted in accordance with the specifications in the <u>approved</u> workpland certify under penalty of law that this document and all attachments were prepared under my direction or supervision in accordance with a system designed to assure that qualified personnel properly gather and evaluate information submitted. Based on my inquiry of the person or persons who manage the system, or those persons directly responsible for gathering the information, the information submitted is, to the best of my knowledge and belief, true, accurate, and complete. I am aware that there are significations. pue belief, true, accurate, and complete. I am aware that there are signification, for submitting false information, including the possibility of The applicable sample collection, handling, preservation, preparation and analysis conducted as part of Phase I of the RFI at the facility described this document that the chemical laboratory was responsible for has been Topr isonment. for knowing violations. gathering the significant and fine the ; ;

1-1002420697

USEPA ID Number

Signature of Owner/Operator Date

Name of Laboratory

Mailing Address of Laboratory:

NESTON-GULL COAST, INC.

2417 BOND ST.

UNIVERSITY PARK, IL 60 Aldo

LWE:MH:sf/sp/634Y,16

Chicago Recycle Confur Facility Name Scott E. Fore

Senior VP-Environment, Health & Safety Name and Title of Owner/Operator Representative

Signature of Laboratory
Responsible Officer

6 KAL

Michael J. Healy Vice Resident Lab Manage/
Name and Title of Laboratory
Responsible Officer

* AFFREE REMEMBER THE NEW LESTER THREED

TO SEPTEMBER 1993, No ATTEMPT WHO
SPECIFIED OR MUDE TO ACMEDIA LOW LEVEL

TICLE MOTHER DETECTION LIMITE AS DESCRIBED

ON PLACE A SECTION P.

APPENDIX C:

Color Photos of SK-CRC Phase I RFI Activities

Installation of deep boring (SB5-deep) in alley, December 1993.

Installation of MW-6 southwest of Container Storage Area #1, December, 1993.

Installation of MW-7 west of Container Storage Area #1, December 1993.

Installation of MW-9 south of Tank Farm #3, December 1993.

Well Development at MW-9 south of Tank Farm #3, December 1993.

Decontamination of Brass Liners for Soil Sampling, December 1993.

In-Situ Hydraulic Conductivity Test at MW-2 north of Tank Farm #3, February 1994.

In-Situ Hydraulic Conductivity Test at MW-8 north of Container Storage Area #1, February 1994.

In-Situ Hydraulic Conductivity Test at MW-9 south of Tank Farm #3, February 1994.

APPENDIX D:

Soil Boring Logs

Limno-Tech, Inc.

Limno-Tech, Inc.

Limno-Tech, Inc.

Samples Samples Samples Samples Samples Permeabile Samples Permeabile Samples Permeabile Samples Permeabile Samples Permeabile Samples Permeabile Samples Permeabile Samples Permeabile Samples	50	ا بم حسالتا		45-2	~ -	40		· · · · · · · · · · · · · · · · · · ·	35 2	. 2 0	30		<u> </u>	Depth (ft)	Compik	Site:_S	
27 28 30 29 29 29 28 32 33 31 32 SAMPLE PID (ppm) 28 29 30 29 31 32 25Y4/2 29 30 25Y4/2 20 25Y4/2 20 25Y4/2 21 25Y4/2 22 25Y4/2 25Y4/2 25Y4/2 26 Code HCL Reaction USCS Code HCL Reaction USCS Code HCL Reaction USCS Code HCL Reaction USCS Code HCL Reaction USCS Code HCL Reaction USCS Code HCL Reaction USCS Code				8 = 8	3 5 0	7 4 3 2 9	8 - 9 7	5 2 4	1 3 5 6				23 76		ation	afety	
Beyole Center, IL Beyole Center		70	ס	٦	7	ס־	ס	ס	סד	₽	ъ	ס־	ט־	Sample	Date:	/ Klee	
BG-PID (ppm) 31 31 BG-PID (ppm) (ppm) 32 SAMPLE PID (ppm) 33 Augusta Sample PID (ppm) 34 Augusta Sample PID (ppm) 35 Augusta Sample PID (ppm) 36 Augusta Sample PID (ppm) 37 Augusta Sample PID (ppm) 38 Augusta Sample PID (ppm) 49 Augusta Sample PID (ppm) 50 Augusta Sample PID (ppm) 60 Augusta S		24	24	24	24	24	24	20?	24	24	24	22	24	1	06/2	n Chic	
25		moist	moist	moist	moist	moist to dry	moist	Σ Ω	wet to moist	moist	wer to	moist	wet to moist	Moisture	8/1994	ago Rec	
25		2.7	2.8	2.9, 3.0	2.9	2.9	2.9	2.6	3.2	in in	<u>u</u>	3.7	<u>w</u>			ycle	
25		3.5	3.0	9.5	3.2	3.0	<u></u>	ć. ć.i	kepi climb-	4.0	رب ن	3,7	.	SAMPLE PID (ppm)		Cente	
USCS Code Graphic Log		2.574/2	2.5Y4/2	2.574/2	2.574/2	2.574/2	2.574/2	2.574/2	2.5 4 4 / 2	2.5Y4/2	2 5 4 4 / 7	2.574/2	2.574/2	Munsell Color/ Code		1	
Graphic Log					5	<u></u>	- I	<u>z</u>						USCS			
Date Drilled: 12/9/93 Drilled By: MATECO Logged By: LTI, JSD Logged By: LTI, JSD Logged By: Ltiff By: Ltiff By: Life Logged By: Ltiff By: Ltiff By: Life Logged By: Ltiff By: Ltiff By: Ltiff Logged By: Ltiff By: Ltiff By: Ltiff Logged By: Ltiff By: Ltiff Logged By: Ltiff By: Ltiff Logged By: Ltiff By: Ltiff Logged						, , , ,	' '		00	000				Graphic			
Well Diagram	Then about 1/2 in. sandy CLAY, very gravelly (subangular shaley gravel), muddy sit/sity CLAY		about § in dark grayish brown stiff CLAY with trace subrounded fine to coarse gravel and cobbles then very thin (<1/4 in) gravelly zone then some CLAY, less coarse material and more plastic; very fine	about 14 in. same CLAY as above then increasing sift (10 in.)	then dark grayish brown very stiff laminated CLAY with trace subrounded fine grayet & cobble, trace fine sand/silt	CLAY as above, increased yunded to subangular cobbles, tone, more fraible fragments; s limestone clasts same CLAY as above,	Stiff grayish brown CLAY with some subrounded to coarse gravel & trace subrounded cobble; trace iron suffide grains	then a very loose muddy SLLT zone; cuttings coming up very loose & wet	about 6 in. carry down then same CLAY as above, less coarse material (pid impacts appear to be from background influences) about 8 in. of same CLAY as above	28 to 30 feet) Stiff dark grayish brown laminated CLAY with some subangular to subrounded fine grayel and silt	Angular to subangular fine to coarse gravelly stiff dark grayish brown CLAY with silt and sand (16 in.)	same as above, but very stiff and dryer	same CLAY for upper 6 in, then very stiff dark grayish brown laminated CLAY with increasing gravel (green shale and white limestone, gravel and cobbles in tip of spoon); coarser material generally oriented parallel to clay laminae; trace fron sulfide		Logged By: LTI, JSD	Date Drilled: 12/9/93	

Limno-Tech, Inc.

Limno-Tech, Inc.

Limno-Tech, Inc.

Limno-Tech, Inc.

Limno-Tech, Inc.

Limno-Tech, Inc.

25 Physical		A A	15 14 13 8	7 00 07 4 30		ω 4 ω	. J 4 3 2	1 4 0 0 0	2 2 2 2	Depth (ft) blowcount samples Permeability Sample Type	Compilation Date: <u>06/29/1994</u>
P- Physical sample: A: Analytical sample		moist to wet	22 to wet moist to	moist moist	18 moist	very 23 wet	24 wet	9 dry	ಸ	Recovery (in.)	06/29/1994
lical sample		t 3.2 4.4	3.1 3.7 t 3.1 3.3	ယ	33	3.5	3.7 4.3	4.1 6.0	4. 6.3	BG-PID (ppm) SAMPLE	oilation Date: 06/29/1994
		very ,4 2.5Y4/2 mild	.7 2.5Y4/2 no very very		.1 2.5Y4/2 no	9 2.5Y3/2 mild	3 2.5Y4/2 no	0 10YR3/1 mild	3 10YR3/1 no	PID (ppm) Munsell Color/ Code HCL Reaction	
		a 3	P	5		***			FIL	g USCS Code Graphic	
	End of Baring. Note: water table encountered 5 to 6 feet below grade	same CLAY	trace fines & fine gravel	Stiff dark grayish brown sitty CLAY with black mottling & becoming less sitty with depth & stiffer Stiff plastic dark grayish brown CLAY with	Stiff dark grayish brown clayey SILT, varved?	no recovery first split spaon, but odor in liners, PID: ~ 5-10 Laase very dark grayish brown clayey SILT	Dark grayish brown clayey SILT with black streaking	same as above, more white concrete material & rubble	FILL - surface material in very dark gray sitty topsoil with white powdery material & concrete rubble	Description (Modified Wentworth)	Drilled By: MATECO Logged By: LTI, JSD
							12 (12 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2 (2	;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;	bentonite chips	Diagram 694.23'	
-569.58	-574.58	, , , , , , , , , , , , , , , , , , , 	-579.58		-584.58		589.58		·	Elevation (ft) 594,58	

APPENDIX E:

Data Validation Procedures

<u>ö</u> File

> DATE: 1/24/94

SKCH1

FROM: Jing CHEN PROJECT:

SUBJECT: **Quality Assurance Review of Analytical Data**

Safety Kleen Chicago Recycle Center, Phase I Investigation

first for each of the data packages, and then the appropriate qualifiers were assigned to the for RCRA data evaluation is still a question. Basically, the case narrative was reviewed at evaluate RCRA data is not fully known at this time, and the availability of specific guidelines detailed than a CLP laboratory data package, the suitability of using the above guidelines to Review, June 1991", and Region V Standard Operating Procedure for Validation of CLP Evaluating Inorganic Analyses, July 1988", "National Functional Guidelines for Organic Data the available information provided by the lab. associated compounds if there were any lab deficiencies. The validation was done based on Organic Data, April 1991". Because a standard RCRA laboratory data package is less The data packages were reviewed using the guidances, including "Functional Guidelines for

SOIL

1. TCLP Metals

and interferences occurred during operation. No data qualifier needs to be changed All analyses were performed within the required holding time. No invalid lab contamination

Volatile Organics

Holding Time

detection limit is an estimated value. (non-detected) results were flagged with a "UJ" qualifier to indicate that the reported positive results were flagged with a "J" qualifier to indicate an estimated value and negative and affected compound(s). When holding time was exceeded, the associated samples with numbers, the corresponding lab identification numbers, the dates of collection and analysis, time for some samples. The following table presents those affected sample identification secondary and/or tertiary dilution and analyses occurred beyond the recommended holding All initial dilution and analysis of samples were within holding time (14 days). However, the

			SB8 17.5-18 93	SB8 19.5-20 93	SB10 17.5-18 93		Sample ID. Lak
			9312G116	9312G116	9312G116		Lab Batch #
			12/8/93	12/8/93	12/8/93		Date Collected
			12/23/93	12/23/93	12/27/93		Date Analyzed Associated
trichlorotrifluoroethane	toluene	tetrachloroethene	trichloroethene (TCE)	trichlorotrifluoroethane	1,1,1- TCA	Compounds	Associated

SB7 8-8.5 SB4 5-5.5	SB8 7.5-8 SB7 11.5-12
9312G116 9312G116	9312G116 9312G116
12/8/93 12/8/93 12/7/93	12/8/93 12/8/93
12/28/93 12/23/93 12/22/93	12/23/93 12/23/93
trichlorotrifluoroethane tetrahydrofuran toluene,tetrahydrofurn	tetrahydrofuran acetone, benzene, toluene, ethylbenzene, styrene, trichlorotrifluoroethane

2) Blanks

concentration found in the associated blank are considered negative and are flagged results greater than five times (ten times for the common contaminants) the concentration Samples with results less than five times (ten times for the common contaminants) the found in the associated blank are considered positive but estimated and are flagged "BJ". Acetone and/or methylene chloride were(was) detected in the method blanks. Samples with "BU". The following is a list of the qualified samples.

Lab Batch #	Associated Compounds
9312G116	acetone
9312G116	acetone
9312G116	acetone
9312G116	acetone, methylene chloride
9312G116	methylene chloride
9312G116	acetone, methylene chloride
9312G116	methylene chloride
9312G116	methylene chloride
9312G116	acetone, methylene chloride
9312G116	acetone
	Lab Batch # 9312G116 9312G116 9312G116 9312G116 9312G116 9312G116 9312G116 9312G116 9312G116 9312G116

used confidently. Other than the above mentioned corrections, the analyses were normal and the data can be

3. Semi-Volatile Organics

1) Holding Time

detection limit is an estimated value. positive results were flagged with a "J" qualifier to indicate an estimated value and negative affected compound(s). When holding time was exceeded, the associated samples with corresponding lab identification numbers, the dates of collection and extraction, and the reruns. The following table presents the affected sample identification numbers, the Most samples were extracted within the holding time (14 days) except for a couple of (non-detected) results were flagged with a "UJ" qualifier to indicate that the reported

SB9 18.5-19 rerun	SB4 5.5-6 rerun		Sample ID.
9312G116	9312G116		Lab ID.
12/6/93	12/7/93		Date Collected
12/28/93	12/28/93		Date Extracted
All analytes	All analytes	Compounds	Associated

2) Blanks

common contaminants) the concentration found in the associated blank are considered estimated and are flagged "BJ". Samples with results less than five times (ten times for the contaminants) the concentration found in the associated blank are considered positive but detection limit. Samples with results greater than five times (ten times for the common The method blanks indicated di-n-butyl-phathalate was analyzed at concentrations below the negative and are flagged "BU". The following is a list of affected samples.

Sample ID.	Lab ID.	Associated Compounds
SB7 8.5-9	9312G116	di-n-butyl-phathalate
SB7 12-12.5	9312G116	di-n-butyl-phathalate
SB7 DUP5	9312G116	di-n-butyl-phathalate
SB8 8-8.5	9312G116	di-n-butyl-phathalate
SB8 18-18.5	9312G116	di-n-butyl-phathalate
SB8 20-20.5	9312G116	di-n-butyl-phathalate
SB10 8-9	9312G116	di-n-butyl-phathalate
SB10 18-18.5	9312G116	di-n-butyl-phathalate
SB6 6.5-7	9312G086	di-n-butyl-phathalate
SB6 18-18.5	9312G086	di-n-butyl-phathalate
SB5 9-9.5	9312G086	di-n-butyl-phathalate
SB5 19-20	9312G086	di-n-butyl-phathalate
SB5 9.5-10 DUP3	9312G086	di-n-butyl-phathalate
SB4 5.5-6	9312G086	di-n-butyl-phathalate
SB4 17.5-18	9312G086	di-n-butyl-phathalate

Surrogate Recovery

limit but greater than 10%, the associated compounds should be considered estimated for unusable for negative results and are qualified as "UR" due to less than 10% recoveries for samples should be considered estimated for positive results and are flagged "J", and associated samples listed in the following table. The acid fraction analytes in the associated A review of surrogate spike data found surrogate recoveries associated with acid and/or are qualified as "UJ". positive results and are flagged "J", and estimated reporting limits for negative results and 2,4,6-tribromophenol and 2-fluorophenol. For those recoveries below the lower acceptance base/neutral fraction semivolatile compound(s) to be outside the acceptable range for the

Surrogate	Recovery (%)	Control Range(%)	Lab ID.	Associated Sample(s)
2,4,6-tribromophenol	8, 4, 10	19-122	9312G086	SB9 18.5-19, SB4 5.5-6,
				SB4 5.5-6 RERUN
Nitrobenzene-d5	11,2	23-120	9312G086	SB9 18.5-19, SB4 5.5-6
2-Fluorobiphenyl	14,3	30-115	9312G086	SB9 18.5-19, SB4 5.5-6
Terphenyl-d14	17,5	18-137	9312G086	SB9 18.5-19, SB4 5.5-6
phenol-d5	12,4	24-113	9312G086	SB9 18.5-19, SB4 5.5-6
2-Fluorophenol	12, 4, 0	25-121	9312G086	SB9 18.5-19, SB4 5.5-6,
				SB4 5.5-6 RERUN

qualification appears necessary based on data validation. Other than the above mentioned correction, the analyses were normal and no data

GROUNDWATER

1. Volatile Organics

1) Holding Time

numbers, the corresponding lab identification numbers, the dates of collection and analysis time for some samples. The following table presents the affected sample identification secondary and/or tertiary dilution and analyses occurred beyond the recommended holding and affected compound(s). All initial dilution and analysis of samples were within holding time (14 days). However, the

Sample ID.	Lab ID.	Date Collected	Date Analyzed	Associated Compounds
MW10 DUP	9312G375	12/21/93	1/5/94	tetrahydrofuran
MW10	9312G375	12/21/93	1/5/94	tetrahydrofuran
MW2	9312G375	12/21/93	1/5/94, 1/7/94	1,2 dichloroethene,
				chloroform, toluene
MW8	9312G375	12/21/93	1/5/94	tetrahydrofuran
MW7	9312G375	12/21/93	1/7/94	tetrahydrofuran,
MW4	9312G375	12/21/93	1/5/94	tetrahydrofuran

2) Blanks

five times (ten times for the common contaminants) the concentration found in the are considered positive but estimated and are flagged "BJ". Samples with results less than limit. Only one sample was affected by this. Samples with results greater than five times associated blank are considered negative and are flagged "BU". (ten times for the common contaminants) the concentration found in the associated blank The method blank indicated acetone was analyzed at concentrations below the detection

Sample ID	Lab ID.	Associated Compounds
Sample ID.		
MW9 RERUN	9312G375	acetone

Other than the above mentioned corrections, the analyses were normal and the data can be used confidently.

2. Semi-Volatile Organics

Holding Time

those affected sample identification numbers, the corresponding lab identification numbers estimated value and negative (non-detected) results were flagged with a "UJ" qualifier to associated samples with positive results were flagged with a "J" qualifier to indicate an samples were re-extracted outside holding times. When holding time was exceeded, the indicate that the reported detection limit is an estimated value. The following table presents All initial runs of samples were extracted within the holding time (7 days). All the associated the dates of collection and analysis, and affected compound(s).

All rerun	Sample ID.
9312G375	Lab ID.
12/21/93	Date Collected
1/14/94	Date Extracted
All analytes	Associated Compounds

2) Surrogate Recovery

for negative results and are qualified as "UJ". considered estimated for positive results and are flagged "J", and estimated reporting limits semivolatile compounds. The base fraction analytes in the associated samples should be The method blank exhibited low surrogate recoveries of two base/neutral fractions

2-Fluorobiphenyl	Nitrobenzene-d5	Surrogate
32	27	Recovery (%)
43-116	35-114	Control Range
9312G375	9312G375	Lab ID.
all base/neutral compounds	all base/neutral compounds	Associated Sample(s)

Other than the above mentioned correction, the analyses were normal and no data qualification appears necessary based on data validation.

Ö

File

DATE:

6/15/94

FROM:

Jing CHEN

PROJECT: SKCH1

SUBJECT: Quality Assurance Review of Analytical Data

February, 1994 Groundwater Sampling

Safety Kleen Chicago Recycle Center, Phase I Investigation

validation was done based on the available information provided by the lab. were assigned to the associated compounds if there were any lab deficiencies. specific guidelines are available for RCRA data validation. Basically, the case narrative were reviewed using USEPA SW846, Method 8270 protocol as guidance because no provided by Roy F. Weston, Inc. Gulf Coast Laboratories, in University Park, Illinois samples included in this review are listed in the table below. The data packages Investigation at the Safety Kleen Chicago Recycle Center in Chicago, Illinois. The analysis of groundwater samples collected during February 1994 as part of the Phase I A quality assurance review was conducted to validate the results generated from was reviewed at first for each of the data packages, and then the appropriate qualifiers

GROUNDWATER SAMPLES INCLUDED IN QUALITY ASSURANCE REVIEW

				7
Limno-Tech	RFW	Date of Sample	Case Number	Parameters
Sample I.D.	LOT No.	Collection		Examined
MW-1	9402G294	2/15/94	005	VOA, BNA
MW-2	9402G294	2/15/94	002	TI,PCBs,VOA,BNA
1				(Appendix IX)
MW-3	9402G294	2/16/94	011	VOA, BNA
MW-4	9402G294	2/15/94	010	VOA, BNA
MW-5	9402G294	2/15/94	009	VOA, BNA
MW-7	9402G294	2/15/94	004	VOA, BNA
WW-8	9402G294	2/14/94	006	VOA, BNA
6-MM	9402G294	2/15/94	007	VOA, BNA
MW-10	9402G294	2/14/94	800	VOA, BNA
Rinseblank	9402G294	2/16/94	001	VOA, BNA
Duplicate	9402G294	2/15/94	003	TI,PCBs, VOA,BNA
•				(Appendix IX)

TI: TAL Metals and Cyanide, Sulfide

VOA: HSL Volatile Organics

BNA: HSL Base-Neutral/Acid Organics

List (HSL) Volatile Organic Analysis (VOA) and Base Neutral/Acid (BNA) analysis using rinse blank and one duplicate, to RFW, for Inorganics, PCBs, Hazardous Substance the period from February 14 to February 15, 1994 and were submitted, along with one The data included groundwater samples collected from nine monitoring wells during

good quality and acceptable for use with no qualifier changes. the most current Statement of Work (SOW) protocols. The data were found to be of

1. Inorganics

All analyses were performed within the required holding time. No invalid lab contamination and interferences occurred during operation. No data qualifier needs to be changed.

2. Volatile Organics

1) Holding Time

All analyses of samples were performed within holding time (14 days).

2) Blanks

The method blank indicated clean, so no qualifiers need to be changed.

3. Semi-Volatile Organics

1) Holding Time

All samples were extracted within the holding time (7 days).

2) Matrix Spikes/ Matrix Spike Duplicates

The relative percent difference (RPD) in method blank was above the Quality Control results would be changed. The low confidences of the above sample results indicate little likelihood that sample Matrix Spikes/ Matrix Spike Duplicates were analyzed outside the 12 hour tune limit. (QC) limit for the compound 1,4-Dichlorobenzene (30%), but the sample used for

APPENDIX F:

IEPA Well Construction Diagrams

	Illinois Environmental	Environmental Protection Agency	Well Co	ompletion Report
	Site #: IEPA ID No. 0316000053	County: Cook		Well# MW4
	Site Name: Safety Kleen Chicago Recycle Center	nter Grid Coordinate*: Northing	205' Ea	sting6
	Drilling Contractor: Mateco	Date Drilling Started: 12/7/93		
	Driller: Bob Dryer/ Dave Bailey	Geologist: Joyce Dunkin	Date Completed:	oleted: 12/7/93
	Drilling Method: Hollow Stem Auger	Drilling Fluids Type: None	None	
			Elevations	01 ft.
	Annular Space Details:	-	597.61	ft. MSL Top of Protective Casing
	Type of Surface Seal: Cement	7	597.43	ft. MSL Top of Riser Pipe ft. Casing Stickup
	Type of Annular Sealant: Bentonite Chips			
	Amount of Cement: # of Bags: Amount of Bentonite: # of Bags:	lbs. per bag	594.69 1.9	ft. MSL Ground Surface ft. Top of annular scalant
	Type of Bentonite Seal (Granular, Pellet):	3/4" Pellets		
	Amount of Bentonite: # of Bags: 3	lbs. per bag 50	1	
	Type of Sand Pack: #7 quartz sand			
	Source of Sand:			
	Amount of Sand: # of Bags: 3	lbs. per bag 50		
	Well Construction Materials			
	Stainless Steel Specify Type	Teflon Specify Type PVC Specify Type Other Specify Type		
	Riser coupling joint 316 Riser pipe above w.t. 316 Riser pipe below w.t. 316 Screen 316			
	Protective casing 3/4"	steel	592.8	ft. Top of Seal
	Measurements to .01	.01 ft. (where applicable)	591.8	ft. Top of Sand
	Riser pipe length	7.66		
. :	Protective casing length Screen length		589.77	ft. Top of Screen
	Bottom of screen to end cap Top of screen to first joint	4" at end of screen, 1.5" plug No joints		
	Total length of casing		5	ft. Total Screen Interval
	en slot size		- V	
	Diameter of borehole (in) ID of riser pipe (in)	2	S84.77 574.69	ft. Bottom of Screen ft. Bottom of Borehole
	* Location relative to SW corner fence post on SK property	n SK property		
	Completed by: Limno-Tech, Inc.	Surveyed by: John Rebik & Associates	s Ill registration #	ation #

	Ill registration#	Ill regis	& Associates	Surveyed by: John Rebik & Associates		ted by: Limno-Tech, Inc.	Completed by:
					it on SK property	Location relative to SW corner fence post on SK property	* Location relative
Bottom of Borenote	•	5/4.49			2		ID of riser pipe (in)
Bottom of Screen	ft. Bo	584.68			80	e (in)	Diameter of borehole (in)
					13%	en	of openings in scre
	,				10	0	en slot size
Total Screen Interval	ft. Tot	5			emofoxi	i joint	Total length of casing
				screen, 1.5 ping	We icinte	end cap	Bottom of screen to end cap
Top of Screen	II. 10	389.68		2	5"	-	Screen length
69						gth	Protective casing length
					7.75		Riser pipe length
Top of Sand	ft. Top	591.68			,		
Total Seal Interval				ile)	.01 ft. (where applicable)	to .	Measurements
Top of Seal	ft. Top	592.68				-	
		٠			3/4" steel	\neg	Coupling
			-		316		
					316		Ri
					316	Riser pipe above w.t.	R
				s	T	-	
				PVC Specify Ty Other Specify Ty	tainless S pecify Ty Feflon Specify Ty		
						on Materials	Well Construction Materials
				50	3 lbs. per bag	Amount of Sand: # of Bags:	Amount
			···········				Source of Sand:
						#/ quartz sano	Type of Sand Pack:
						1	
		100000 100000		50	3 lbs. per bag	:# of Bags:	Amount of Bentonite:
				1	3/4" Pellets	al (Granular, Pellet):	Type of Bentonite Seal (Granular, Pellet):
MSL Ground Surface Top of annular scalant	ft. MS	594.49			lbs. per bag	Amount of Cement: # of Bags:Amount of Bentonite: # of Bags:	Amount of C
			<		S	lant: Bentonite Pellets	Type of Annular Sealant:
sing Stickup						Comons	Type of Surface Sear.
MSL Top of Protective Casing MSL Top of Riser Pipe	ft. MS	598.53 597.43]				Type of Curface Seal:
						Details:	Annular Space Details:
ť	s01 ft.	Elevations					
					80	Tager mac wonort	Drilling Meinod:
		ne	Drilling Fluids Type: None	Drilling F	967	Hollow Stem Au	\$
12/7/93	npleted:	Date Completed:		Geologist: Joyce Dunkin		Bob Dryer/ Dave Bailey	Driller: Bob Dry
			12/7/93	Date Drilling Started:		Mateco	Drilling Contractor:
-39'	Easting	73'	Northing	Grid Coordinate*:	Center	Safety Kleen Chicago Recycle Center	Safety k
MW-5	Well#		Cook	County:		IEPA ID No. 0316000053	Site #: IEPA II
		440		Agency	al Protection	Environmental Protection Agency	Illinois
Well Completion Report	Comple	W II I		Acces	ol Protoction		

Illinois Environme	Environmental Protection Agency	ency		Well Compl	letion Report
Siz #: IEDA ID Nº 0316000053	Q	County:	Cook	Well#	MW-6
ame:		loordinate*:	Northing 30'	Easting	161'
Drilling Contractor: Mateco		Date Drilling Started: 1	12/6/93		
Driller: Bob Dryer/ Dave Bailey	Geologist:	ogist: Joyce Dunkin		Date Completed:	12/6/93
Drilling Method: Hollow Stem Auger	Auger	Drilling Fluids Type: None	Type: None		
			Ek	Elevations01	1 ft.
Annular Space Details:					
Type of Surface Seal: Cement				594.62 ft. M 594.62 ft. M	MSL Top of Protective Casing MSL Top of Riser Pipe Casing Stickun
Type of Annular Sealant: Bentonite Chips	ps				
Amount of Cement: # of Bags: Amount of Bentonite: # of Bags:	lbs. per baglbs. per bag			594.62 ft. M 1.39 ft. Tr	MSL Ground Surface Top of annular scalant
Type of Bentonite Seal (Granular, Pellet):	3/4" Pellets				
Amount of Bentonite: # of Bags:	3 lbs. per bag 5	50			
Type of Sand Pack: #7 quartz sand	C.				
Source of Sand:					
Amount of Sand: # of Bags:	3 lbs. per bag	50			
Well Construction Materials			ala di n		
	Stainless Steel Specify Type Teflon Specify Type PVC	Specify Type Other Specify Type			
Riser coupling joint Riser pipe above w.t. Riser pipe below w.t.		L I I			
Coupling joint screen or riser Protective casing	316 3/4" steel				
	to .01 ft. (where applicable)			#. P.	Top of Seal Total Seal Interval
Riser pipe length	4.89'			391./3	top ot satio
Screen length	5'			589.73 ft. T	Top of Screen
Bottom of screen to end cap Ton of screen to first joint	4" at end of screen, No joints	n, 1.5" plug			
Total length of casing				5ft_T	Total Screen Interval
cen slot size	13%				
Diameter of borehole (in)	8			584.73 ft. B 575.62 ft. B	Bottom of Screen Bottom of Borehole
* Location relative to SW corner fence post on SK property	ost on SK property	E			
Completed by: Limno-Tech, Inc.		Surveyed by: John Rebik & Associates	sociates	Ill registration #_	

tration #	III registration #	& Associates	Surveyed by: John Rebik & Associates	Completed by: Limno-Tech, Inc.	
			property	Location relative to SW corner fence post on SK property	*
ft. Bottom of Borehole	579.74		2	D of riser pipe (in)	Ħ
ft. Bottom of Screen	584.55		8	Diameter of borehole (in)	ַ וַׁטַ
			13%	en slot size	
It. I otal Screen Interval				Total length of casing	To
	•			Top of screen to first joint	밁
,			4" at end of screen, 1.5" plug	Bottom of screen to end cap	म्र
ft. Top of Screen	589.55		5'	rotective casing length	2 7
			8.23	Riser pipe length	יקו
ft. Top of Sand	591.55		The state of the s		
			.01 ft. (where applicable)	Measurements to .01 ft. (v	<u> </u>
ft. Total Scal Interval	592.55				
				Protective casing 3/4" steel	
					T
				Riser coupling joint 316 Riser pine above w.t. 316	T
		1.	Sp P\ Sp Ot	1]
			eflon pecify VC pecify ther	ainles pecify	
			Туре	s Stee	
			•	-i	
				Well Construction Materials	¥
			lbs. per bag 50	Amount of Sand: # of Bags: 3	
				Source of Sand:	So
			I	Type of Sand Pack: #7 quartz sand	Ţ
	<u> </u>		lbs, per bag 50	Amount of Bentonite: # of Bags: 3	An
					ī
			3/4" Pellet	Type of Bentonite Seal (Granular, Pellet):	Туј
it. 1 op of annuar scarait	2.19		lbs. per bag	Amount of Bentonite: # of Bags:	
ft. MSL Ground Surface	594.74	1	lbs. per bag	Amount of Cement: # of Bags:	
				Type of Annular Sealant Bentonite Chips	Ty
ft. Casing Stickup	3.04				
ft. MSL Top of Protective Casing ft. MSL Top of Riser Pipe	597.91 597.78			Type of Surface Seal: Cement	<u>-</u>]
				Annular Space Details:	A
s01 ft.	Elevations				
	16	Drilling Fluids Type: None	Drilling	Drilling Method: Hollow Stem Auger	Dr.
npleted: 12/8/93	Date Completed:	jn	Geologist: Joyce Dunkin	Driller: Bob Dryer/ Dave Bailey	Di.
		12/8/93	Date Drilling Started:	Drilling Contractor: Mateco) Dn
		Sminion	Grid Coordinate.	Safety Kleen Chicago Kecycle Center	o d
		Northing	Guid Coordinate*		
Well # MW-7		Cook	County:	Site #: IEPA ID No. 0316000053	S.
Completion Report	Well Comp		otection Agency	Illinois Environmental Protection Agency	₼

	Ill registration #	Ill regis	& Associates	Surveyed by: John Rebik & Associates	S	Tech, Inc.	Completed by: Limno-Tech, Inc.	Compl	
					SK property	nce post on	ve to SW corner fence	Location relative to	* Loc
Bottom of Borehole	ft. Bo	572.92			2		ole (in)	ID of riser pipe (in)	Diamet ID of ri
Bottom of Screen		583.03			13%	-	oreen	of openings in screen	of op
					10		C	een slot size	een.
Total Screen Interval	ft. Tot	5			110 Journe		autionit.	Total length of casing	Total le
				screen, i.o. piug	4" at end of		o end cap	Bottom of screen to end cap	Bottom
Top of Screen	ft. Top	588.03		, , ,	51			length	Screen
}							ength	Protective casing length	Protect
b or onto		0,00.00			6.58			ine length	Dicern
Ton of Sand	⊅ 	\$90.03		le)	.01 ft. (where applicable)	to .01 t	S	Measurements	Meas
Total Seal Interval	ft. Tot	1							
Ton of Seal		 601 03			iteel	ing 3/4" steel	Protective casing		
					6		Coupling joint screen or riser	Coupling	
					6 0		Riser pipe below v		
			-		6		Riser pipe above w.t.		
					ŀ		Riser coupling jo		
			- Alexandrian de la companya de la c	PVC Specify Other Specify	Teflon Specify	Stainless Specify			
						Steel			
			· · · · · · · · · · · · · · · · · · ·			Ø	Well Construction Materials	Construc	Well
				50	lbs. per bag	6 8:	Amount of Sand: # of Bags:	Amoun	
								Source of Sand:	Source
					The state of the s			-	- J. F. C.
						z sand	: #7 quartz sand	Type of Sand Pack:	Type of
		20000		50	lbs. per bag	ω	Amount of Bentonite: # of Bags:	t of Bentoni	Amoun
		<u> </u>			3/4" Pellet	ellet):	Tyne of Bentonite Seal (Granular, Pellet):	Bentonite S	Type of
MSL Ground Surface Top of annular sealant	ft. MS	593.92 2.89			lbs. per bag lbs. per bag	gs:	Amount of Cement: # of Bags: Amount of Bentonite: # of Bags:	Amount o: Amount of I	
						e Chips	ealant: Bentonite Chips	Type of Annular Sealant:	Type of
Casing Stickup	ft. Cas	2.69					al: Cement	Type of Surface Seal:	Type of
I Top of Protective Casing		596.75							
							e Details:	Annular Space Details:	Annul
it.	s01 ft.	Elevations							
		*	Dilling Fluids Type, Assic	Dilling I		Hollow Stem Auger	Hollow	Drilling Method:	Drilling
		ri i	hide Type: Nor			•	,	: .	
12/8/93	npleted:	Date Completed:	1	Geologist: Joyce Dunkin		7	Bob Dryer/ Dave Bailey	Bob D	Driller:
			12/8/93	Date Drilling Started:			Mateco	Drilling Contractor:	Drilling
190	Easting	200	Northing	Grid Coordinate*:	iter	Recycle Cen	Safety Kleen Chicago Recycle Center		cite Name:
WW-8	Well#		Cook	County:)53	IEPA ID No. 0316000053	IEPA	Site #:
letton vebor		vven Comp		Agency	Environmental Protection Agency	nental		Illinois	
tion Deport		M Lall							

Illinois Environmental Protection Agency	ıtal Protection	Agency		Well (Well Completion Report	Report
Site #: IEPA ID No. 0316000053		County:	Cook		Well#	MW-9
ame:	le Center	Grid Coordinate*:	Northing	21	Easting	14
Drilling Contractor: Mateco		Date Drilling Started:	12/6/93			
Driller: Bob Dryer/ Dave Bailey		Geologist: Joyce Dunkin		Date Completed:	pleted:	12/6/93
Drilling Method: Hollow Stem Auger	Auger	Drilling Fl	Drilling Fluids Type: None			
				Elevations	s .01 ft.	
Annular Space Details:					!	
Type of Surface Seal: Cement				596.72 596.72	ft. MSL Top o	MSL Top of Protective Casing MSL Top of Riser Pipe
Type of Annular Scalant: Bentonite Chips	ps			2:03	Tr. Casing Success	Park.
Amount of Cement: # of Bags:	lbs. per bag_ lbs. per bag_			594.03 2.13	ft. MSL Ground Surface	MSL Ground Surface Top of annular sealant
Type of Bentonite Seal (Granular, Pellet):	3/4" Pellet					•
Amount of Bentonite: # of Bags:	3 lbs. per bag	50	ESSESSES			
Type of Sand Pack: #7 quartz sand						
Source of Sand:						
Amount of Sand: # of Bags:	3 lbs. per bag	50				
Well Construction Materials						
	Stainless Steel Specify Type Teflon Specify Type	PVC Specify Type Other Specify Type				
	316					
Riser pipe below w.t.	316					
Coupling joint screen or riser	316 3/4" steel					
	to 01 # (where applicable)			591.73	ft. Top of Seal ft. Total Seal Interval	Interval
	700			590.73	ft. Top of Sand	d
Riser pipe length Protective casing length	7.99					
Screen length	S !			588.73	ft. Top of Screen	čn
Bottom of screen to end cap	4" at end of screen,	screen, 1.5" plug	The state of the s			
Total length of casing	Striot on			5	ft. Total Screen Interval	n Interval
een slot size	10		A STATE OF THE STA		- 1	
# of openings in screen	13%			583.73	ft. Bottom of Screen	Screen
ID of riser pipe (in)	2			575.03	ft. Bottom of Borehole	Borehole
* Location relative to SW corner fence post on SK property	ost on SK property					

Completed by: Limno-Tech, Inc.

Surveyed by: John Rebik & Associates

Ill registration #

1#	III registration#	 	Associates	Surveyed by: John Rebik & Associates	Su	: Limno-Tech, Inc.	Completed by:	
					n SK property	Location relative to SW corner fence post on SK property	ion relative to SW	* Locat
It. Bottom of Borehole		575.	750 770 770 770 770 770 770 770 770 770		2		ID of riser pipe (in)	ID of rise
ft. Bottom of Screen		585.74			8		Diameter of borehole (in)	Diameter
					13%		nings in screen	# of oper
					10		en slot size	en s
ft. Total Screen Interval	5						Total length of casing	Total len
				- 1	No joints	1	Ton of screen to first joint	Ton of se
1	İ			reen 1 5" nlug	4" at end of screen		ngm	Screen length
ft. Top of Screen		590.74			Ş		e casing length	Protectiv
					3.49		Riser pipe length	Ruser pip
It. Top of Sand	Ì	592.74						
				٣	.01 ft. (where applicable)	to .01	Measurements	Measu
ft. Total Seal Interval								
ft. Top of Scal		593.74			5/4 Sieci	Protective casing 3/4	Pro	
					316	7	Coupling joint s	
					16		Screen	
					16	Riser pipe below w.t. 3	Riser pi	
					16	1	Riser pi	
				s	Т	T	Digar	
		- Andrew Control		PVC Specify Ther Other Specify	pecify fellon	tainless		
				<u>.</u>		Steel		
		<u></u>				1aterials	Well Construction Materials	Well C
				50	3 lbs. per bag		Amount of Sand: # of Bags:	
							f Sand:	Source of Sand:
								7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
						#7 quartz sand	Tyne of Sand Pack:	Type of \$
		300	2888	50	3 lbs. per bag_	of Bags:	Amount of Bentonite: # of	Amount
		800000	80.00000					
		30001800			3/4" Pellet	anular, Pellet):	Type of Bentonite Seal (Granular, Pellet):	Type of I
			<u>}</u>		ios. per pag	Ic: # of pags:	Amount of Bentonite: # of Bags:	
ft. MSL Ground Surface ft. Top of annular sealant		594.58			lbs. per bag	nt: # of Bags:	Amount of Cement:	
						Denomic Cilps	Type of Annuar Seatant:	Type of A
						Dantonita China		,
ft. MSL Top of Protective Casing ft. MSL Top of Riser Pipe ft. Casing Sticken		594.58 594.23				Cement	Type of Surface Seal:	Type of S
						ils:	Annular Space Details:	Annula
.01 ft.		Elevations					,	
			:				arcurou.	Simulation St.
		one	Drilling Fluids Type: None	Drilling Fl	4	Hollow Stem Auger	Method:	Drilling Method:
d: 12/8/93	Date Completed:	Date		Geologist: Joyce Dunkin	6	ave Bailey	Bob Dryer/ Dave Bailey	Driller:
			12/8/93	Date Drilling Started:		Mateco	Drilling Contractor:	Drilling (
g 167	Easting	155	Northing	Grid Coordinate*:	enter	Safety Kleen Chicago Recycle Center	1	o∷ _{te} Name:
# MW-10	Well#		Cook	County:		0316000053	IEPA ID No. 0316000053	Site #:
		•		Agency	Elivii oliillelitai riotecaoni	Minelia		
Well Completion Report	II Com	¥e		A CARCO	Drotection	iironmonta		

APPENDIX G:

Well Development Logs

LIMNO-TECH INC. WELL DEVELOPMENT FIELD LOG INITIA DATE JTP 12/16/93 WELL/BORING I.D.
MW4
SCREEN DEPTH
12.68 ft. from TOC

WELL DEVELOPMENT/PURGING - METHOD/EQUIPMENT USED Disposable Bailer - Level C Safety Equipment

	ĺ							
								T
								T
								T
					GIIGHT CICCACT			12-20-90.
2	6.8	N.A.	1	2	slighty cloudy	2	03: 17:30	3
œ o					slightly cloudy		18:10 yes-15 min.	18:10
7.5		7.19	11.3	1.5	slightly cloudy - clear brown		17:10 yes-15 min.	17:10
တ		6.98	11.3	2.5	slightly cloudy light brown	- 1	16:20 ves-5 min.	16:20
3.5				3.5	slightly cloudy yellow		15:20 ves-2 min.	15:20
(GAL)	(S.U.)	(@25C)	(C)	(gal)	WATER APPEARANCE	(apm)	TIME SURGED?	TIME
PURGED			TEMB	AOLOWE AMOLOA	PUMPING	PUMP		
		つくううしていてく						

LIMNO-TECH	LIMNO-TECH INC. WELL DEVELOPMENT FIELD LOG	.06	WELL/BORING I.D. MW5
PROJECT NAME	PROJECT CODE INI	BTAD AITINI	SCREEN DEPTH
Safety-Kleen Chicago Recycle Center SKCH1, Task 6	SKCH1, Task 6	TP 12/16/93	12.75 ft. from TOC

WELL DEVELOPMENT/PURGING - METHOD/EQUIPMENT USED Disposable Bailer - Level C Safety Equipment

COM																	1/:35	16:40	15:45		TIME	
COMMENTS:																	17:35 yes-10 min.	16:40 yes-10 min.	yes-2 min.)	TIME SURGED?	
																	Z.A			~	RATE	PUMP
											The second secon						slightly cloudy	slightly cloudy light brown	slightly cloudy yellow prown		CHARACTERISTICS/	PUMPING
																	0.0	3 4	, o	, Jan	FURGED (gal)	VOLUME
							,											7.0	3	3	_	;
																	1.70	1.70	4 75	(800)	(@25C)	ALIAITONGNOO
																		7 20	7.75	0.0.	SUD TIG	-
																	-	3 0	D Y	7	(GAL)	CUM, VOLUME

_
₹
Ž
7
_
O
T
eri.
111
റ
¥
ECH.
$\overline{}$
_
\mathbf{c}
_
5
\sim
m
Ē
:
\vdash
~
ڀ
m
ĕ
<u>m</u>
_
Ö
\circ
ŏ
ž
5.
m
_
_
П
m
\vdash
U
_
5
റ
_

8.55 K. 5 1 CC	J F 12/1//83	SKCH1, Task 6	Safety-Kleen Chicago Recycle Center SKCH1, Task 6
	102700	1	
CONTRA CHT I	INITIA DA LE	PROJECT CODE	PROJECT NAME
14440			
MA/G			
WELL/BORING I.D.	LD LOG	I IMNO-TECH INC. WELL DEVELOPMENT FIELD LOG	I IMNO-TEC

PROJECT NAME PROJECT CODE INITIA DATE Safety-Kleen Chicago Recycle Center SKCH1, Task 6 JTP 12/17/93
SCREEN DEPTH 9.53 ft. from TOC

0.32
44.4
100
1 1 10.7 9.86
(C)
PURGED TEMP (UMHOS/CM)

LIMNO-TECH INC. WELL DEVELOPMENT FIELD LOG

13.23 ft. from TOC	SBB/JTP 12/9/93 - 12/21/199	SKCH1, Task 6	Safety-Kleen Chicago Recycle Center
SCREEN DEPTH	INITIALS DATE	PRO IECT CODE	
MW7			!
WELL/BORING I.D.	HELD LOG	LIMNO-TECH INC. WELL DEVELOPMENT FIELD LOG	LIMNO-

WELL DEVELOPMENT/PURGING - METHOD/EQUIPMENT USED Stainless Steel Bailer- Level B on 12/9/93; Disposable Bailer - Level C Safety Equipment through 12/21/93

 	T	 	-	1	1	1	7	- 1	1	 	7	1	Т	1		1	 Т	-	1	7	- T	 -	Т	_	_	-	-	· T	7	-1			٦
																									11:48	11:35	12/21/93	12/20/93	12/20/93	12/9/93		TIME	
																														yes		SURGED?	
																									N.A.	N.A.				N	(gpm)	RATE	מאון ים ו
																									slightly cloudy	slightly cloudy - yellow tint		clear, bailed dry at 1.5 gal.	slighly yellow, bailed dry at 4 gal.	strong odor	WATER APPEARANCE	CHARACTERISTICS/	SNIGMLIA
																									1.5	_		1.5	4	18	(gal)	PURGED	TVOL UME
																									9.5	8.4			1	ı	(C)	TEMP	
																									5.09	5.06				I	(@25C)	(UMHOS/CM)	CONDUCTIVITY
																									7.3	100	1		1	ı	(S.U.)	무	
																									25.5	24.5		23.5	22	18	(GAL)	PURGED	CUM. VOLUME

느
<u> </u>
Ž
Q
∸
Ш
\mathbf{c}
TECH IN
7
ົດ
NC. N
§ E
WELL
\sqsubseteq
<u> </u>
ម្ព
M
E
Q
ELOPME
≤
Z
_
-
Ë
Ш
ᅒ
_
Ó.
≍

LIMNO-TECH	LIMNO-TECH INC. WELL DEVELOPMENT FIELD LOG) LOG	WELL/BORING I.D.
PROJECT NAME	PROJECT CODE	INITIA DATE	SCREEN DEPTH
ago Recycle Center	SKCH1, Task 6	JTP 12/17/93	13.58 ft. from TOC

WELL DEVELOPMENT/PURGING - METHOD/EQUIPMENT USED Disposable Bailer - Level C Safety Equipment

႙ြ	Γ			\neg					T		T	\neg				٦		T	Т	T	T	77	6	6	밁	딞	긺	ᆲ	13		_	1
<u> </u>	L	L	Ц			\perp	ightharpoonup	_	_	\dashv	_	_	╝	Щ		_	\perp		┙		1	7:00	16:40	16:08	မ	13:50	25	13:00	40		<u>K</u>	1
COMMENTS:																						ПО	yes	yes	yes	yes	yes	yes	yes		TIME SURGED?	
																						N.A			Z. P	•	Z	Z A	Z	(gpm)	RATE	
		AND THE PARTY OF T																				slightly cloudy	slightly cloudy	slightly cloudy, gray	cloudy gray	cloudy gray	very cloudy gray	very cloudy gray	very cloudy-muddy gray	WATER APPEARANCE	CHARACTERISTICS/	7 1. (7.1.)
																						ď	10	10	10	5	5_	5	10	(gal)	PURGED	
																						α.σ	9.1	8.4	8.6	8.9	8.9	9.4	9.6	(C)	TEMP	
																						7.85	8 0	7.85	7.5	7.63	7.35	7.51	7.28	(@25C)	(UMHOS/CM)	くていしていていくてく
																						0.01	6.81	6.82	6.81	6.81	6.83	6.81	6.81	(S.U.)	밀	
																						00	3 3	45	35	25	20	15	10	(GAL)	PURGED	

PROJECT NAME
Safety-Kleen Chicago Recycle Center LIMNO-TECH INC. WELL DEVELOPMENT FIELD LOG PROJECT CODE SKCH1, Task 6 | IELD LOG | WELL/BORING I.D. | MW9 | SCREEN DEPTH | SBB/JTP | 12/9/93 - 12/21/1993 | 12.99 ft. from TOC

WELL DEVELOPMENT/PURGING - METHOD/EQUIPMENT USED Stainless Steel Bailer- Level B on 12/9/93; Disposable Bailer - Level C Safety Equipment through 12/21/93

2	Т	T	Т	٦	Т	Т	Т		T	П	П	Ī	Т	T	٦	\neg	\neg	Т		I	丁	П	Т	Т	Т	Т	T		Т	T	Т	П	آج	П	٦	
OMMENTS																											8.05	12/21/93	14.00	1	11:50	11:00	12/20/93		12/9/93	TIME
Ţŗ																													ýes		ves	γes			Ves	SURGED?
																										Z A	Z		2	2	Z	N.A			Z	PUMP RATE (gpm)
																										slightly cloudy	slightly cloudy		Cledied up, werk ary at 2.0 year	shored in went day et 2 5 gal	cleared slightly, bailed dry at 4 gal.	brown cloudy, bailed dry at 3.5 gal.			Sight	PUMPING CHARACTERISTICS/ WATER APPEARANCE
																										2	1.5		ŗ	7 7	4	3.5			20	VOLUME PURGED (gal)
																										9.7	9.4				1	1			1	TEMP (C)
																										1.72	1.67				1	-				CONDUCTIVITY (UMHOS/CM) (@25C)
																										7.5	7.6			I	1	i			ı	рН (S.U.)
																										32.5	31.5			မ	27.5	23.5			20	PURGED (GAL)

_
=
S
7
\overline{a}
Y
∸
Πİ
ö
¥
_
=
Z
റ
•
<
≤
Ш
_
ĸ
<
-
巴
<u>'</u> ~
$\underline{\circ}$
℧
~
而
~
_
Т
丽
Ь
$\mathbf{\circ}$
\sim

LIMNO-TECH	LIMNO-TECH INC. WELL DEVELOPMENT FIELD LOG	- Foe	WELL/BORING I.D.
			MW10
PROJECT NAME	PROJECT CODE IN	NITIA DATE	SCREEN DEPTH
ago Recycle Center	SKCH1, Task 6	JTP 12/17/93	12/17/93 8.49 ft. from TOC

WELL DEVELOPMENT/PURGING - METHOD/EQUIPMENT USED Disposable Bailer - Level C Safety Equipment

															16:35	16:15	14:00	13:40	10:5	9:20		Ī
															no	5 yes			0 yes		0000	TIME SHRGED?
															N.A	I	N.A.	N.A.	Z.A	N.A	(agpm)	PUMP
															slightly cloudy	slightly cloudy	slightly cloudy	cloudy brown	cloudy brown	very cloudy-muddy, oil film	WATER APPEARANCE	PUMPING CHARACTERISTICS/
															σ	30	5	30	30	15	(gal)	PURGED
															ö.	9.2	9.3	8.8	8.9	9.5	(C)	TEMP
															6.77	6.28	6.66	6.21	6.99	10.75	(@25C)	(UMHOS/CM)
															σ.α-	6.83	6.81	6.83	7.23	7.17	(ś.U.)	
															-10	110	80	75	45	15	(GAL)	PURGED

APPENDIX H:

Well Head Screening and Groundwater Sampling Data

			3								7	7.	Т	13-21 7-0	12-21 P-1	П	\Box	Т	12-16 7	T	12-16 5	h 91-21	Т	12-16	DATE NO.		Project Name:	0
																	161.1		7.807	25.5	1.5	43.2	W. 2.	19700	READING	ם ס	4	7
																	8,56	12.991	/3 25	9,53	12.75	12.68	10,34	7.7.7	川一 .	_ Î - ^,	'	V WA
,													7. ~ / .	4./3	3.67'		30,00	707	16.18	3.26	6.911	6.60	28.20	5.75	DEPTH	7 764700	Project Code	WATER LEVEL RECORD
													13.70	13.35	13:30		10:07	ないなり	12:30	05:21	11:55	57:11	13:40	13.55				RECORD
											FVC - No HCC6>5 -	1 1			16AW P		1	7 8270 - 9/2	Key 3210 -	164 3210 - 9/6 ward	Key 3210 -	3210 -	ka 2126 - T dride	7 7 - 9212	MMEZ		Initials: Date: 17	00/1
											0/1	217	200	80 6	८०८	Ĭ.	7	でも	N L	575	F	70	170	177	INITIALS		2-16-93	(12.21)

-n) - CRC	GROUND-WATER SAMPLING I
Code	ING FIELD LOG
	Log

GROUND-WATER SAMPLING FIELD LOG	FIELD LOG
SAFETY KLEEN - CRC SKC	SKCH-1 JT/ Date Time 12.45
Location: Pa	Parameters: 8240 /8260 - VOA 8270-Senii 1/66+166-(CSNA)
Well Number: $\mathcal{H}\mathcal{U} - \mathcal{A}$ Well Number: \mathcal{A}/\mathcal{A} Correct Care Pipe Ht. Above Ground: We	Well Locat <u>ion:</u> Casing Material/Diame <u>ter: よん</u> にんららって Well Depth:
Static Water Depth (From T.O.C.): 3.05	
Purge Volume Requirement (gal): 3.8 Well Development / Pumping Characteristics: 5t/o-s 0-19-1-5/3-4ty closel 2-te-p-8.8	Volume Purged: 1.5 Solut 0000 [Gul-3.43/PH-7.2/10/5-87]
Decontamination Procedures: All SA-pliz & Quippet has	o Disposall -No Decen
Sample Containers: $2 \cdot V_0 - V_1 + C_0 - V_0 - V_0 + C_0 - V_0 -$	- 1-Ander BNA Both
of Sample: S/74th C	Method:
Samples Delivered To: Leston Gult Co	-33.7°/=
comments: BAILES DRY AFTE	306 or 12-20-93
Signature:	

1	\sim	
1	u s	
ı		
ı	GROUND-	
ł	$\tilde{}$	
ı	\sim	
1		
1	=	
ı	$\overline{}$	
ı	_	
ı	~	
ı	-	
1	OND-	
ı	l J	
ı	-	
ı	٠.	
ı	-	
ı	~	
ı	_	
ı	D-WATER :	
ı	مر	
ı	_	
ı	-1	
ı		
ı	1 13	
•		
ı	775	
ı	~	
ı		
ı		
ı	U)	
1	-	
1	\mathbf{D}	
ľ		
ı	_	
ı	-	
ı	=	
ı	77	
ı	•	
ı	_	
ı		
٩	_	
1	_	
ı	~	
ı	SAMPLING	
ı		
ı	٠,	
ı	FIELD	
ı	~	
ı	FIELD	
ı	-	
ı	-	
1	111	
1		
1	1	
ĺ	<u>-</u>	
ľ	Г	
ŀ	·	
1		
Ł		
í		
ŧ	5	
1	1	

GROUND-WATER SAMPLING FIELD LOG
SAFETY KCEEN - CRC SKCH 1 JTP 12-21-8 7:20
Location: Parameters: 8240/8260 - VOH
Od 10- Servi Volatiles DNY
Well Number: アル・3 Well Location:
Lock Number: タノス (Casing Material/Diameter: Shinkss - マック
Pipe Ht. Above Ground: Well Depth:
Static Water Depth (From T.O.C.): 2.83
Purge Equipment: <u>Visposable Barles</u> Purge Volume Requirement (nat): 4.0 Volume Purged: 2.5
2-5/198tly cloudy-Turb-20.1/ph-7.1-/Cond-4.88/Texp
Sampled well at 9:30 - went Dry w/ 1000ml Togo - fixing sayor
Decontamination Procedures: All Sapliz Equipment was Diposusu
Sample Containers: 2 VOC VIALS - I AMBER BNA BOWL Sample Preservation: VOC - HL - BNA - Now
Method:
Physical Appearance of Sample: Slightly cloudy gray Sample Numbers:
Samples Delivered To: WESTON GULF COAST CARS
Comments: Baiko Dry after 3.0 gul -
10 gol Porged From well By BDC on 12-20-93
0
Signature:

ı	7	ı
ı	\simeq	•
ı	C	þ
ı	Ē	•
ı	\succeq	•
١	2	
ı	_	1
ŀ	Ţ	
ŀ	Ċ	•
ľ	<	
ļ	ъ	•
ŀ	_	
ı	_	١
ŀ	π	į
i	T	١
ı	^	
ĺ	U.	١
ı	~	
۱	2	_
١	~	
ĺ	7	
Į	·	
۱	r	
١	=	
۱	2	
۱	C	١
l	ч	•
l	т	1
1	_:	
	TOONE-WATER WANTENG TIFFE FO	ı
۱	r	٠
۱	-	
١	Ļ	d
1	_	
1	1	

SAFETYKLEEN - CRC SKGH-1 STP 1/2-21-13/0.15
Location: Parameters: 82 40/8260 - VO A
Well Number: アルジー (
S210
und:
Static Water Depth (From T.O.C.): 6.60
Purge Equipment: 1/3/03 < b \ 3.7 \ Volume Purged: 2.5 o
racteristics: ODOR - Solut
0-1 gal - slightly cloudy - Ph-70 /Te-p- 9,6/cond-11,19/Tus-36.2
Sprolin E
0
Sample Containers: 2 VOC VIACS - 1 AMBER BNA Both
Sample Preservation: $\sqrt{OC - HCR}$ $B \cap A - Mon$ Field Filtered (Y or N): M Method:
Physical Appearance of Sample: Slightly Cloudy Sample Numbers:
7 2 10 1
Comments: Bailes Dry After 3.5 gal -
40 god. Perged from well on 12-20-93 by STF
CONTROL CONTRO

	\sim
	uJ
	~
	\sim
	u
	_
	ц,
	~
	~
	$\mathbf{-}$
	<
	\leq
	~
	مر
	_:
	т
ļ	J.
ı	
	10
ı	0,
ı	~
ı	
ı	_
i	\rightarrow
ì	\mathbf{T}
ı	u
ı	_
ı	_
ı	_
ı	~
ı	\sim
ı	w,
ı	
ı	П
ı	
t	771
l	
ĺ	_
ı	١
ı	17
۱	_
1	
ı	GROUND-WATER SAMPLING FIELD LO
ı	\sim
ſ	~

Signature:	Comments: Sharp Edges to well -	Physical Appearance of Sample: c/c4/ Sample Numbers: MU - S Samples Delivered To: WESTON GULF Cons. Cool Temp - 33,	HCL- BNA- Meth	Decontamination Procedures: All Sampling Ea	Purge Equipment: Disposable Bailer Purge Volume Requirement (gal): 3.1 Well Development / Pumping Characteristics: C Propare Observed Sell Dry of 6-1 gal - Slightly cloudy yellow tat - 1-65 gal Bailed Dry of 6-5 gal - Toibidity - 23.4		Location: Paran	GROUND-WATER SAMPLING FIELD LOG Project Name SAFETI KLEEN - CRC SKCH-1 JT
	Cut string	SOF	BNA	Equipment		Well Location: Casing Material/Diar Well Depth:	Parameters: 82%/0/ 8270 (Gルみ	ELD LOG
	ring to	S)	Bottle	ما ي دورون صمه	Volume Purged: 6.5 to wet) Slightly claudy - No Color Cond-188 ph 7.2	Well Locat <u>ion:</u> Casing Material/Diame <u>ter: らナムルんssー名.09</u> Well Depth <u>:</u>	1/8260 - VOA 5 Sémi Volutiles 4)	Date Time 12-20-93 16:30

ł	uJ	
ı	וכ	
t	~	
ŀ	U	
t	Ē	
ł	_	
ı	z	
ŀ	$\overline{}$	
	Ÿ	
ı	٠.	
ı	>	
ı	=	
ı	مر	
ı	-4	
ı	-	
ı	111	
ı	ᄁ	
ı		
ı	ഗ	
١	·-	
ŀ	مر	
١	7	
t	=	
ı	ΤŲ	ļ
	_	١
ŧ	٤_	
ı	7	١
ı	$\overline{}$	
ł	(L)	
ì		
ı	77	
ı	=	
1	(1)	ı
۱	1	
1	<u>`</u>	
1	Ų	
	SROUND-WATER SAMPLING FIELD LO	
Ì	ı.	
ĺ		١

	ດ
	Z
	ñ
	×
	≒
	줌
	Ų
	۳
	<
	⋗
	-1
	庶
	ょ
	'n
	š
	ᅩ
	≤
	ש
i	Г
	5
	ᇙ
	u,
	ᆩ
	긁
	Ш
	匚
	U
İ	г
ı	5

Signature:	comments: Bailes Dry at 5	Physical Appearance of Sample: Slightly of Sample Numbers: MW-T Samples Delivered To: Weston Gulf (Sample Containers: $2 - VocViACS - Sample Preservation: Voc - HcC - Sample Preservation: Voc - HcC - Sample Preservation: Voc - HcC$	ntamination Procedures: 11 Samplens Ewipment	700	Static Water Depth (From T.O.C.): ヒートラート Purge Equipment: ションターラート Purge Volume Requirement (gal): ス・ソート Well Development / Pumping Characteristics:		Location:	GROUND-WATER SAMPLING FIELD LOG Project Name SAFETY LCEEN - CRC SKCHI UTI
	1.0 gul BDC on 12-20-93	C/ordy - 33.5	1 '	MS.	- Ph - 7.3 Just 31.7 - 7.5 Kord-5.09/ph-7.3/Tus-17.	Volume Purged: み、S	Well Locat <u>ion:</u> Casing Material/Diameter <u>らたいんの</u> が Well Depth:	Parameters: 8240/8260 - VOA 8270-Semi Volchleo-BNA	Code By Date Time

ı	u,
ı	71
ı	≃
l	ROUND-WATER SAMPLING FIELD LC
l	<u> </u>
ı	≒
ı	4
l	
l	Τ.
ı	<
ı	<
l	\mathbf{P}
ı	<u>- 1</u>
ı	
l	ш
l	711
ı	~
ŀ	ı'n
ŀ	٠,
l	Þ
l	
	≤
	u
ı	ᆽᆖ
ı	<u>-</u>
ı	ラ
ı	=
ı	ഒ
ı	
ı	תר
ı	
ı	ш
ı	ï
ı	느
l	U
ı	
ı	Γ-
	\cap

W - CRC	GROUND-WATER SAMPLING FIELD LOG
Code SKCH-1	ING FIELD
By C	Log

Signature:
Porged Fr
Comments: Bailes Dry at Approx 3.5 gal
Samples Delivered 10: 425 Por Gult COAST CASS
Sample: c/ω
5
Sample Containers: 2 - VOC - 1 BNA - A. J. Sample Preservation: HCC - Non.
All Sampling Equipment was Disposable
Decontamination Procedures:
wby - 70
Volume Purged: 23.0
1/62
Pipe Ht. Above Ground: Well Depth:
0
1 1
Location: Parameters: 8240/8260/ - VOA 8270 - Semi Volctile
Project Name SAFETY KCEEN - CRC SKCH-1 STP 17-21-8 8:30

1	_
ı	G)
l	71
ł	~
	O
l	Ž.
۱	≒
۱	_
l	GROUND
ł	<u></u>
ŀ	5
1	=
l	Р
1	-
ł	됴
ł	44
ı	
ı	co
ı	٧.
ı	,,,
ŀ	⋜
ĺ	===
ı	Ľ.
ı	ŗ
1	==
ł	\(\)
ì	a
۱	77
į	≂
l	
ţ	\vdash
l	
ł	_
1	501 (
1	\cap
١	\simeq
١	(J)

Project Name SAFETY KLEEN - CRC SKCH-1 STP 12-21-92	Date Time ノス・マノ・93 /0/50
Location: Parameters: 8270 Semi Vola +	- VOA
Well Number: イル・/〇 Well Location: Lock Number: 32/〇 Casing Material/Diameter かんなら、2,०१′	ailess-2,09"
05-64 Briler	0
Volume Purged:	8.0
72/PH-7.2/Cond-6.80/7	Te-p-10.2
Decontamination Procedures: All Sampling Equipment us Disposable-No 1	No Dicor
Sample Containers: 2-VOC VIACS - 1 Ande BNA	UA BOHRO
Sample Preservation: $VOC - HCC - BNA - Non-C$ Field Filtered (Y or N):	
of Sample: Clear	
Samples Delivered To: WESTON GUIF COAST CABS Cooker Terp 32.9° F	5
Comments: RECHARGES WELL	
Synt Poyed by BDC on 12-20-93	3
Signature: Duplicate Taken AT MW-10	

Project Name:	e:	W/ Safety Kleen- CRC		WATER LEVEL RECORD RC Project Code: SKCHI		Initials: JTP	Date:	2/14/94
DATE	WELL	PID	WELL	WATER	TIME	COMMENTS	TS	INITIALS
2/14/94	1 11	32.1	9.21	4.31	14:10			JTP
2/14/94		1860.2	10.24	3.99	14:05			JTP
2/14/94	L ω	9.5	10.34	3.81 7.56	13:58			T F
2/14/94	4 r.	6.0	12.00	8.13	14:00			T
2/14/94	<u>6</u>	13.2	9.53	3.04	13:46			JTP
2/14/94	7	8.1	13.23	7	13:04			JTP
2/14/94	00	6.8	13.58	5.98	13:22			JTP
2/14/94	9	4.6	12.99	6.95	13:52			JTP
2/14/94	10	21.3	8.49	4.61	13:33			JTP
2/16/94	P-1				10:08	No reading - obstruction	ction	JTP
2/16/94	P-2			4.51	10:11			JTP
2/16/94	P-3			5.63	10:14			JTP
			. 1					

Safety Kleen -CRC S	SKCHI JTP	2/14/94 13:45
l ocation: From Tank Pad Well (SE) 34.6'E	Parameters:	8240/8260-VOA
1 1011 1 alik 1 ad 1101 (ac/ 61.0 =		8270 Semi Volatile - BNA
Well Number: MW-1	Well Location:	
	Casing Material/Diameter:	ter: stainless-2.09"
e Ground:	Well Depth:	
Static Water Depth (From T.O.C.): 4.31'		
Purge Equipment: Disposable Bailer		
in in	Volume Purged:	rged: 1.125
Well Development / Pumping Characteristics:		
Temp.11.7 °C	Turb.243 cloudy light broading after 1.0 gal	cloudy light brown,solvent odor, bailed dry after 1.0 gal
18:05 1.125gal pH- Cond Temp T	Turb cloudy brow	cloudy brown, bailed dry after 0.125gal
19:30 1.125gal	Dry	
Decontamination Procedures: All sampling equipment was disposable	as disposable	
Sample Containers: 2 VOC vials, 1 amber BNA bottle		
Sample Preservation: VOC'S - HCL, BNA- none		
Field Filtered (Y or N): N	Method:	
Physical Appearance of Sample:		
Sample Numbers: MW-1		
Samples Delivered To: Weston Gulf Coast Labs		
Comments: weather: 18:20 dark, windy, gust (10-20 S.W.), 3.8 ° C	20 S.W.), 3.8 ° C	
sampled well 2/15/94 8:50		
8:50 Produced approx. 750 ml		
12:00 Produced approx. 250 ml - need 2000 ml more) ml more	
16:50 Produced approx. 500 ml - need 1700 ml more) ml more	
17:30 Produced approx. 200 ml - need 1200 ml more) ml more	
2/16/94 8:40 Produced approx. 1200 ml -end of sample	mple	
Signature:		i

	Signature:
յսgh - end sample	16:45 produced about 1.5 gal - more than enough - end sample
ied	14:00 produced about 1 gal - 1 more gal needed
0	12:45 produced about 1 gal - need 2 gal more
	11:30 produced about 1 gal - need 3 more gal
	9:30 produced about 1 gal - need lots more
	Comments: sampled well 2/15/94 9:30
	Samples Delivered To: Weston Gulf Coast Labs
	Sample Numbers: MW-2
	Physical Appearance of Sample:
Method:	Field Filtered (Y or N): N
	Sample Preservation VOC'S - HCL, BNA- none
	Sample Containers: 2 VOC vials, 1 amber BNA bottle
disposable	Decontamination Procedures: All sampling equipment was disposable
Turb.:25/ Groudy gray - strong solvent odor	9:30 1.0 gal. pH:6.8 Cond.:5.69 Temp.:2.9°C I
Volume Purged: 4.5	Purge Volume Requirement (gal): 3.3
	Purge Equipment: Disposable Bailer
	Static Water Depth (From T.O.C.):
Well Depth:	e Ground:
Casing Material/Diameter:	Lock Number:
Well Location:	Well Number: MW-2
8270 Semi Volatile - BNA	Sign - 1' N - 5.8' E of Fence
Parameters: 8240/8260-VOA	Location: From Fence Post 3' North of Yellow
Code By Date Time SKCHI JTP 2/15/94 9:15	Project Name Cafety Kleen -CRC

Code SKCHI

Ву

뒫

Date 2/14/94

Time

16:20

Project Name Safety Kleen -CRC

Location: From Yellow Support Post (center)	Parameters:	
in or		0270 Selli Voidilie - DIAC
Well Number: MW-3	Well Location:	ation:
	Casing M	Casing Material/Diameter: stainless-2.09"
Pipe Ht. Above Ground:	Well Depth:	
Static Water Depth (From T.O.C.): 3.81'		
Purge Equipment: Disposable Bailer		
Purge Volume Requirement (gal): 3.5		Volume Purged: 2.15
Well Development / Pumping Characteristics:		
16:24 1.5 gal. pH:7.2 Cond.:5.95 Temp.:10.2°	C Turb.:N.F	Cond.:5.95 Temp.:10.2°C Turb.:N.R. very cloudy muddy gray - very slight
17:50 2.0 gal pH- Cond Тетр	Turb	cloudy grey, bailed dry after 0.5 gal
Cond	Turb	cloudy grey, bailed dry after 0.15 gal
Decontamination Procedures: All sampling equipment was disposable	vas disposa	ble
Sample Containers: 2 VOC vials, 1 amber BNA bottle		
Sample Preservation VOC'S - HCL, BNA- none		
Field Filtered (Y or N): N	_Method:	
Physical Appearance of Sample:		
Sample Numbers: MW-3		
Samples Delivered To: Weston Gulf Coast Labs		
Comments:		
Signature:		

Project Name Safety Kleen -CRC	SKCHI	JTP	2/15/94	10:20
Location:	Parameters:	ς;	8240/8260-VOA	VOA
			8270 Semi	8270 Semi Volatile - BNA
Mol Nambor	Well I ocation:	o.		
	Casing Ma	Casing Material/Diameter:	eter:	
e Ground:	Well Depth:	::		
Static Water Depth (From T.O.C.):				
Purge Equipment: Disposable Bailer				
Purge Volume Requirement (gal): 3.5		Volume Purged:		3
Well Development / Pumping Characteristics:				
10:30 0.75 gal. pH:7.9 Cond.:12.93 Temp.:10.8°C Turb.:271 cloudy gray brown -	Turb.:271	cloudy gra	y brown -	
		bailed dry	bailed dry after 0.75 gal	<u> </u>
12:05 0.8 gal pH- Cond Temp	Turb	cloudy gre	y, bailed dn	cloudy grey, bailed dry after 1/4 bailer
16:55 0.925 gal pH- Cond Temp	Turb	cloudy gre	y, bailed dry	cloudy grey, bailed dry after 1/2 bailer
		9		
Decontamination Procedures. An sampling equipment was disposable	uisposabio			
Sample Containers: 2 VOC vials, 1 amber BNA bottle			i	
Sample Preservation VOC'S - HCL, BNA- none				
Field Filtered (Y or N): N	Method:			
Physical Appearance of Sample:				
Sample Numbers: MW-3				
Samples Delivered To: Weston Gulf Coast Labs				
Comments: 9:15 Filled VOC's, still need about 2.5 liters	ıt 2.5 liters			
11:30 Produced approx. 50 ml				
Signature:				

Code IRv Date Time
ЭНІ ЗТР 2/15/94
Location: Parameters: 8240/8260-VOA
Well Number: MW-4 Well Location:
Wiell Denth:
Pipe Ht. Above Ground:
Static Water Depth (From T.O.C.): 7.56'
Purge Equipment: Disposable Bailer
달.
aracteristics:
15:53 1.5 gal. pH:7.1 Cond.:10.50 Temp.:7.7°C Turb.:41.3 slightly cloudy - solvent odor - rugbee
ogor - palled dry at 3.0 gai
bailed dry at 1.0 gal.
Decontamination Procedures: All sampling equipment was disposable
Sample Containers: 2 VOC vials, 1 amber BNA bottle
Sample Preservation VOC'S - HCL, BNA- none
Field Filtered (Y or N): N Method:
Physical Appearance of Sample:
Sample Numbers: MW-H
Samples Delivered To: Weston Gulf Coast Labs
Comments: well sampled 2/15/94 18:25
olyilature.

Project Name	Code By Date Time SKCHI JTP 2/15/94 15:35
() () () () () () () () () ()	
Location: P.	Parameters: 8240/8260-VOA
	8270 Semi Volatile - BNA
Well Number MW-5	Well Location:
	Casing Material/Diameter: stainless-2.09"
The Hr. Opens Ground.	
Static Water Depth (From T.O.C.): 8.13'	
Purge Equipment: Disposable Bailer	
털.	Volume Purged: 4
racteristics:	
Temp.:6.2°C	Turb.:17.7 slightly cloudy - bailed dry at 3.0 gal
4.0 gal pH:7.5 Cond.:2.04	Temp.:5.6°C Turb.:57.0 slightly cloudy - surged throughout bailed dry at 1.0 gal.
Decontamination Procedures: All sampling equipment was disposable	disposable
Sample Containers: 2 VOC vials, 1 amber BNA bottle	
Sample Preservation VOC'S - HCL, BNA- none	
	Method:
Physical Appearance of Sample:	
Sample Numbers: MW-5	And the state of t
Samples Delivered To: Weston Gulf Coast Labs	
COIIII FORMS. WORLDWINDING D. 1975 1 1985	
Signature:	

Code SKCHI

Date 2/14/94

Time

Project Name Safety Kleen -CRC

	Signature:
	Comments:
	Samples Delivered To:
	Sample Numbers:
	Physical Appearance of Sample:
Method:	Field Filtered (Y or N):
	Sample Preservation:
	Sample Containers: 2 VOC vials, 1 amber BNA bottle
	_
nt was disposable	Decontamination Procedures: All sampling equipment was disposable
casing - bailer won't fit	
Turb No Access - Ice build up on inside of	19:40 0.0 gal. pH- Cond Temp
	Well Development / Pumping Characteristics:
Volume Purged: NA	Purge Volume Requirement (gal): 3.5
	Purge Equipment: Disposable Bailer
	Static Water Depth (From T.O.C.): 3.04'
Well Depth:	Pipe Ht. Above Ground:
Casing Material/Diameter: stainless-2.09"	Lock Number:
Well Location:	Well Number: MW-6
OLIO COMBIO DIAL	-32 3 OI Felice
Parameters: 8240/8260-VOA	Location: From Pad Comer (SW) 23'W.

	By TB
Safety Rieen - CRC	210101
Location:	Parameters: 8240/8260-VOA
	8270 Semi Volatile - BNA
Well Number: MW-7	Well Location:
	Casing Material/Diameter: stainless-2.09"
Pipe Ht. Above Ground:	Well Depth:
Static Water Depth (From T.O.C.): 7.00'	
Purge Equipment: Disposable Bailer	
Purge Volume Requirement (gal): 3.3	Volume Purged: 4
Well Development / Pumping Characteristics:	
Temp.:5.5°C	Turb.:42.3 slightly cloudy - yellow tint, bailed dry after 3.0 gal
13:45 4.0 gal pH:7.0 Cond.:7.95 Temp.:7.0°C Ti	Turb.:27.4 slightly cloudy - yellow tint, bailed dry after 1.0 gal
Decontamination Procedures: All sampling equipment was disposable	disposable
Sample Containers: 2 VOC vials, 1 amber BNA bottle	
Sample Preservation VOC'S - HCL, BNA- none	
Field Filtered (Y or N): N M	Method:
Physical Appearance of Sample:	
Sample Numbers: MW- 1	
Samples Delivered To: Weston Gulf Coast Labs	
Comments: well sampled 2/15/94 16:35	
Cigiratio.	

	Signature:
	Comments: well sampled 2/14/94 19:10
	4
	Sample Numbers: MW-8
Wenlou.	Physical Appearance of Sample:
	VOC'S - H
	Sample Containers: 2 VOC vials, 1 amber BNA bottle
was disposable	Procedures: All sampling
Temp.:6.5°C Turb.:124 slightly cloudy	pH:7.1 Cond.:7.12
C Turb.:107 slightly cloudy	18:50 7.5 gal pH:7.1 Cond.:7.29 Temp.:7.2°C
- propane	
slightly cloudy after 2.0 gal, solvant odor	
Cond :7.58 Temp.:7.0°C Turb.:65.4 cloudy to slightly cloud 0-2	18:40 5 0 cal nH-7 1 Cond 7 58 Temp 7 0°c
	racteristics
Volume Purged: 10	<u>=</u> .
	Purge Equipment: Disposable Bailer
	Static Water Depth (From T.O.C.): 5.98'
wen Deput.	Pipe Ht. Above Ground:
Casing Material/Diameter: stainless-z.ue	Lock Number:
į	Well Number: MW-8
OZYO Ocidi Acidiic - DAV	Sign - T. N - 5.8 E of Fence
Parameters: 8240/8260-VOA	Location: From Fence Post 3' North of Yellow
	Caigly (Neal) -CINO
Code By Date Time SKCHI JTP 2/14/94 18:25	Project Name Safety Kleen -CRC

Date 2/15/94

Project Name	By Date Time
Safety Kleen -CRC	SKCHI JIP 2/15/94 13:30
Location:	Parameters: 8240/8260-VOA
	8270 Semi Volatile - BNA
Well Number: MW-9	Well Location:
;	Casing Material/Diameter: stainless-2.09"
e Ground:	
Static Water Depth (From T.O.C.): 6.95'	
Sailer	
Ĕ.	Volume Purged: 4
racteristics:	
	Temp.:7.1°C Turb.:91.9 slightly cloudy light brown -
	bailed dry after 2.0 gal
14:10 4.0 gal pH:7.5 Cond.:1.73 Temp.:8.6°C	Turb.:46.7 signty cloudy light brown - hailed dry after 2.0 gal - surged 2 min.
Decontamination Procedures: All sampling equipment was disposable	s disposable
Sample Containers: 2 VOC vials, 1 amber BNA bottle	
Sample Preservation VOC'S - HCL, BNA- none	
Field Filtered (Y or N):	Method:
Physical Appearance of Sample:	
Sample Numbers: MW-9	
4	
Comments: well sampled 2/15/94 17:15	
Signature:	

Signature:		!					Hyaical Appearative of Campic.	Thursday Appearance of Sample.	Z	Sample Preservation: VOC'S - HCL, BNA- none							pH Cond.	1	pH:7.2 Cond.7.67 Temp.4.2°C	pH:7.1 Cond.4.6/ lemp.4.1°C				pH-7.2	Vell Development / Pumping Characteristics:	ourge Volume Requirement (gal): 2.1								e Ground:	MW-10	MW-10	MW-10	MW-10	m Pad Corner (NW) 46.5S, 19.6W MW-10 Ground:	ad Comer (NW) 46.5S, 19.6W MW-10 MW-10	ad Comer (NW) 46.5S, 19.6W MW-10
					:										atic		slightly cloudy	.1 slightly cloudy	1	1		- Propane	slightly cloudy after 1 gal - Solvent odor	24 very cloudy gray - 0-1 gal cleared to								pth:	erial/Diameter:	Material/Diameter: stainless-2.09"	n: erial/Diameter:	n: erial/Diameter:	n: erial/Diameter:	8270 Semi n: srial/Diameter:	8240/8260 8270 Semi 8270 Semi nn: prial/Diameter:	8240/8260- 8270 Semi 8270 Semi n: prial/Diameter:	2/14/94 : 8240/8260 : 8270 Semi 8270 Semi pin: prial/Diameter:
		Comments: well sampled 2/14/94 at 17:35			s; well sample	Delivered To	Jelivered To: Well sample well sample	Delivered To: well sample s: well sample	ppearance of Sample: umbers: MW-10 Delivered To: well sample	ppearance of Sample: umbers: MW-10 Delivered To: well sample s; well sample	reservation: VOCS - FICE, BNA- none ed (Y or N): N ppearance of Sample:	ed (Y or N): ppearance of Sample: umbers: MW-10 Weston Gulf Coast Labs s: well sampled 2/14/94 at 17:35	ontainers: 2 VOC vials, 1 amber BNA bottle eservation: VOC'S - HCL, BNA- none ed (Y or N): N ppearance of Sample: N ppearance of Sample: Weston Gulf Coast Labs Delivered To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ontainers: 2 VOC vials, 1 amber BNA bottle eservation: VOC'S - HCL, BNA- none ed (Y or N): N ppearance of Sample: N umbers: MW-10 Weston Gulf Coast Labs s: well sampled 2/14/94 at 17:35	ontainers: 2 VOC vials, 1 amber BNA bottle eservation: VOC'S - HCL, BNA- none ed (Y or N): N ppearance of Sample: N umbers: MW-10 Selivered To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ed (Y or N): ppearance of Sample: phiered To: well sample well sample	ination Procedures: All sampling equipment was ination Procedures: All sampling equipment was ination Procedures: 2 VOC vials, 1 amber BNA bottle eservation: VOC'S - HCL, BNA- none ppearance of Sample: N ppearance of Sample: Weston Gulf Coast Labs Selivered To: Well sampled 2/14/94 at 17:35	ination Procedures: All sampling equipment was disposable equipment was disposable equipment was disposable equipment was disposable equipment was disposable equipment was disposable equipment was disposable equipment was disposable equipment was disposable equipment was disposable equipment was disposable exercised. All sampling equipment was disposable equipment equipment equipment was disposable equipment equipme	10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH Cond. Temp. Turb. ination Procedures: All sampling equipment was disposable equipment was disposable. Peservation: VOC'S - HCL, BNA- none ed (Y or N): N Method: ppearance of Sample: Umbers: MW-10 Selivered To: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	10.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH Cond. Temp. Turb. ination Procedures: All sampling equipment was disposable esservation: VOC'S - HCL, BNA- none ed (Y or N): N MW-10 Delivered To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	8.0 gal pH:/.1 Cond.4.67 lemp.4.1°C lurb.188 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH Cond. Temp. Turb. ination Procedures: All sampling equipment was disposable eservation: VOC'S - HCL, BNA- none ed (Y or N): N MW-10 Delivered To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	6.0 gal pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH Cond. Temp. Turb. ination Procedures: All sampling equipment was disposable eservation: VOC'S - HCL, BNA- none ed (Y or N): N MW-10 Delivered To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	6.0 gal pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH Cond. Temp. Turb. ination Procedures: All sampling equipment was disposable ed (Y or N): N	6.0 gal pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH Cond. Temp. Turb. ination Procedures: All sampling equipment was disposable ed (Y or N): N Method: ppearance of Sample: ppearance of Sample: well sampled 2/14/94 at 17:35 well sampled 2/14/94 at 17:35	3.5 gal. pH-7.2 6.0 gal pH:7.1 8.0 gal pH:7.2 10.0 gal pH:7.2 11.0 gal pH ination Procedures: vOC'S - Hierory ppearance of Sample: umbers: MW-10 Delivered To: well sample	lopment / Pumping Characteristics: 3.5 gal. pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 11.0 gal pH Cond. Temp. Turb. Ination Procedures: All sampling equipment was disposable ed (Y or N): N Weston Gulf Coast Labs well sampled 2/14/94 at 17:35 Well sampled 2/14/94 at 17:35	Ime Requirement (gal): 2.1 Iopment / Pumping Characteristics:	ipment: Disposable Baller Image Requirement (gal): 2.1 3.5 gal. pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 10.0 gal pH Cond. Temp. Turb.61.5 ination Procedures: All sampling equipment was disposable eservation: VOC'S - HCL, BNA- none ed (Y or N): N MW-10 Delivered To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ipment: Disposable Bailer Ime Requirement (gal): 2.1 Disposable Bailer	ipment: Disposable Bailer Jime Requirement (gal): 3.5 gal. pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 11.0 gal pH Cond. Temp. Turb. 11.0 gal pH Cond. Temp. Turb. 11.0 gal pH Cond. Temp. Turb. 11.0 gal pH Cond. Temp. Murbers: All sampling equipment was disposable ed (Y or N): N Weston Gulf Coast Labs Delivered To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ipment: Disposable Bailer Jopment (gal): 2.1 Jopment / Pumping Characteristics: 2.1 Journal PH:7.1 Cond.4.67 Temp.4.2°C Turb.124 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 Journal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 Journal pH:7.2 Cond.7.57 Temp.4.2	bove Ground: Well Depth (From T.O.C.): ### 4.61' ### 4.61' ### 2.1 ### 2.1 ### 2.1 ### 2.1 ### 2.1 ### 2.1 #### 2.1 #### 2.1 #### 2.1 #### 2.1 ##### 2.1 ###################################	ber: Casing Mat Well Depth (From T.O.C.): Well Depth (From T.O.C.): Imperit Disposable Bailer Imperit / Pumping Characteristics: 3.5 gal. pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 8.0 gal pH:7.1 Cond.7.67 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp. 3.9°C Turb.60.1 11.0 gal pH Cond. Temp. Turb. Ination Procedures: All sampling equipment was disposable ed (Y or N): N Method: ppearance of Sample: umbers: MWV-10 Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	ber: www-to- Casing Mat bove Ground: well Depth bove Ground: well Depth bove Ground: well Depth bove Ground: well Depth lipment: Disposable Bailer June Requirement (gal): 2.1 lopment / Pumping Characteristics: 3.5 gal. pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 8.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 11.0 gal pH Cond. Temp. Turb. 11.0 gal pH Cond. Temp. Turb. Turb. Ination Procedures: All sampling equipment was disposable ed (Y or N): N Method: ppearance of Sample: Unbers: well sampled 2/14/94 at 17:35 well sampled 2/14/94 at 17:35	Der: MW-10 Well Location	ber: Well Locati ber: Well Locati ber: Well Locati Casing Mat Casing Mat Casing Mat bove Ground: Well Depth bove Ground: Well Depth Well Depth Well Depth Well Depth Well Depth From T.O.C.): 4.61' Well Depth Well Depth Well Depth From T.O.C.): A.61' Well Depth From T.O.C.): A.61' Well Depth From T.O.C.): A.61' Well Depth From T.O.C.): Casing Mat Well Depth From T.O.C.): A.61' Well Depth From T.O.C. A.61' From T.A.61' Turb.61.5 Turb.61.5 Turb.61.5 A.62' Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Temp.4.1°C Turb.68 B.0.0 Gall PH.7.2 Cond.7.67 Te	ber: MW-10 Well Locati ber: Well Casing Mat bove Ground: Well Depth bove Ground: Well Depth bove Ground: Well Depth Casing Mat Casing Mat Well Depth Well Depth Well Depth Well Depth To Casing Mat Well Depth Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat To Casing Mat Well Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Casing Mat To Turb.168 To Turb.168 To Turb.60.1 Turb. Turb Method: To Method: To Weston Guif Coast Labs To Well sampled 2/14/94 at 17:35	ber: MW-10 Well Location	Parameters	From Pad Corner (NW) 46.5S, 19.6W Parameters Per: MW-10 Well Locati ber: Vell Cosing Mal bove Ground: Well Depth From T.O.C.): 4.61' For Depth (From T.O.C.): 4.61' For Depth (From T.O.C.): 4.61' Well Depth Well Depth Well Depth Well Depth Well Depth For Depth (From T.O.C.): Temp.4.2°C Turb.168 B.0 gal pH:7.1 Cond.4.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 11.0 gal pH	From Pad Comer (NW) 46.5S, 19.6W Parameters ber: Well Locati ber: Well Locati ber: Well Locati Casing Mal bove Ground: Well Depth bove Ground: Well Depth Casing Mal bove Ground: Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth From T.O.C.): 10.0 gal pH:7.1 Cond.4.67 Temp.4.2°C Turb.168 8.0 gal pH:7.2 Cond.6.59 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 10.0 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 11.0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Well Sampling equipment was disposable material was disposable material was disposable material was disposable material was disposable material was disposable material was disposable material was disposable material was disposable material was disposable material was disposable material was disposable was disposable material was disposable was disposable material was disposable was d
		Comments: well sampled 2/14/94 at 17:35			well sample	well sample	well sample	well sample	f Sample: MW- 10	f Sample:	F Sample:	VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - HCL, BNA- none VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - House of Sample: MW- 10 Well sample	yOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S - HoyOC'S	cdures: All sampling equipment was disposable VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable VOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	bH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable vOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable vOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable voc's - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. ph Turb. p	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. phi: Temp. Turb. phi: Temp. Turb. phi: Temp. Turb. phi: Temp. Turb. phi: Temp. Turb. phi: Temp. Turb. phi: Temp.3.9°C Turb.60.1 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C Turb.61.5 phi: Temp.4.2°C	pH-7.2 Cond6.59 Temp4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. Temp. Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Mass disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposable disposab	mping Characteristics: pH-7.2	ment (gal): mping Characteristics: pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.1 Cond.7.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH: Cond. Temp. Turb. pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond. Temp. Mass disposable pubers: All sampling equipment was disposable voc's - HCL, BNA- none N Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ment (gal): mping Characteristics: pH-7.2 Cond.4.67 Temp.4.1°C Turb.168 pH:7.1 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp	Disposable Bailer ment (gal): pH-7.2 Cond.4.67 Temp.4.1°C Turb.168 pH-7.2 Cond.7.67 Temp.4.2°C Turb.168 pH-7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH-7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH-7.2 Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph-7.2 Cond.7.57 Temp.4.2°C Turb.61.5 ph	ment (gal): ment (gal): pH:7.1	ment (gal): ment (gal): ment (gal): pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH Cond. Temp. Turb. H Cond. Temp. Mass disposable pures: All sampling equipment was disposable pures: N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ment (gal): Disposable Bailer ment (gal): DH:7.2 Cond.4.67 Temp.4.1°C Turb.168 DH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 DH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 DH:7.2 Cond. Temp. Turb. Cond. Temp. Method: f Sample: N Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	Casing Mat Well Depth T.O.C.): 4.61' Disposable Bailer ment (gal): 2.1 mping Characteristics: 2.1 pH:7.1 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond. Temp. Turb. clures: All sampling equipment was disposable voc's - HCL, BNA- none N Weston Gulf Coast Labs well sampled 2/14/94 at 17:35 Well 2/14/94 at 17:35	Casing Mail Pepth (From T.O.C.): Requirement (gal): 1.1 1.2 1.2 1.3 1.4.61* Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well D	MW-10 MW-10 Casing Mate Cound: Pepth (From T.O.C.): Requirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequirement (gal): Sequiremen	MW-10 Well Locati	MW-10 Well Locati Casing Mal Casing Mal Casing Mal Vell Depth (From T.O.C.): Pepth (From T.O.C.): Requirement (gal): S gal. Disposable Bailer Pumping Characteristics: S gal. pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 D gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 O gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.1 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.1 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.1 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.1 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.1 Cond.7.57 Temp.4.2°C Turb.60.1 O gal pH:7.2 Cond.7.57 Temp.	MW-10 MW-10 Well Locati Casing Mai e Ground: Pepth (From T.O.C.): Requirement (gal): 2.1 ment / Pumping Characteristics: 5 gal. pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 0 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 10 gal pH:7.2 Cond.7.57 Temp.1.9°C Turb.61.5 Method: arance of Sample: arance of Sample: well sampled 2/14/94 at 17:35 Well Depth Well Locati Casing Mai Well Depth Well Depth Well Locati Casing Mai Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth	mm Pad Corner (NW) 46.5S, 19.6W MW-10	MW-10 MW-10 Well Locati Casing Mat Well Parameters Well Locati Casing Mat Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth To Casing Mat Well Depth To Casing Mat Well Depth To Casing Mat Well Depth Well Depth To Casing Mat Well Depth To Temp. 4.2°C Turb.168 Temp. 4.2°C Turb.168 pH:7.1 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. Torb. Torb. Nampling equipment was disposable See of Sample: MW-10 To: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	MW-10 MW-10 MW-10 Well Locati Casing Mat Casing Mat Well Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Bailer Disposable Cand.6.59 Temp.4.2°C Turb.168 pH-7.2 Cond.7.67 Temp.4.2°C Turb.61.5. pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. Disposable Disposable Turb. Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Disposable Dis
					well sample	well sample	well sample	Well sample	f Sample: MW- 10	f Sample:	f Sample:	VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - HCL, BNA- none VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - Howard Completers of Sample: MW- 10 Well sample	voc's - Howell sample	cdures: All sampling equipment was disposable VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable VOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	bH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable vOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. PH Cond. Temp. Turb. PH Cond. Temp. Turb. PH Cond. Temp. Turb. PH Cond. Temp. Turb. PH Cond. Temp. Turb. PH Cond. Temp. Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb. PH Turb.	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable voc's - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. All sampling equipment was disposable vOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. physical sequipment was disposable and sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable with the physical sequipment was disposable wit	pH-7.2 Cond.4.6.59 Temp.4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. Temp. Turb.60.1 pH Cond. Temp. Turb. clures: All sampling equipment was disposable voc's - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	mping Characteristics: pH-7.2 Cond6.59 Temp4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. Turb. pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp	mping Characteristics: pH-7.2	ment (gal): mping Characteristics: pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.67 Temp.3.9°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Temp. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb. H Cond. Turb	Disposable Bailer ment (gal): pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. H Cond. Temp. H Cond. H Cond. Temp. H Cond. Temp. H Cond. H Cond. Temp. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Cond. H Co	ment (gal): ment (gal): pH:7.1	ment (gal): ment (gal): pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH: Cond. Temp. Turb. pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 ph:7.2 Cond.7.57 Temp.4	Well Depth Disposable Bailer 2.1	Casing Mat Well Depth Well Depth T.O.C.): 4.61' Disposable Bailer ment (gal): 2.1 mping Characteristics: 2.1 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond. Temp. 3.9°C Turb.60.1 OH Cond. Temp. Weston BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Meston Gulf Coast Labs well sampled 2/14/94 at 17:35	Casing Mail e Ground: Well Depth (From T.O.C.): Requirement (gal): Sgal. Disposable Bailer 2.1 ment / Pumping Characteristics: Sgal. pH-7.2 Cond.4.67 Temp.4.1°C Turb.168 Digal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 O gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Turb.60.1 O gal pH:7.2 Cond. Temp. O gal pH:7.2 Cond. Temp. Method: Sarance of Sample: Sarance of Sample: Weston Gulf Coast Labs Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth	MW-10 Well Locati Casing Mat Casing Mat Well Depth TO.C.): 4.61' Disposable Bailer ment (gal): 2.1 mping Characteristics: pH-7.2 Cond6.59 Temp.4.2°C Turb.61.5 pH:7.1 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 oh Cond. Temp. Turb. oh Cond. Temp. Turb. oh Cond. Temp. Method:	MW-10 Well Locati Casing Mal Casing Mal Casing Mal Casing Mal Casing Mal Casing Mal Casing Mal Casing Mal Well Depth (Prom T.O.C.): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Repth Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Require	MW-10 Well Locati Casing Mat Pepth (From T.O.C.): Requirement (gal): Sgal. pH-7.2 Cond6.59 Temp.4.2°C Turb124 Disposable Bailer Sgal. pH-7.2 Cond.7.67 Temp.4.2°C Turb.61.5 Ogal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 Ogal pH:7.2 Cond.7.67 Temp.3.9°C Turb.60.1 Ogal pH:7.2 Cond. Temp.3.9°C Turb.60.1 Ogal pH Cond. Temp. Temp. Turb. Ogal pH Cond. Temp. Method: Inners: 2 VOC vials, 1 amber BNA bottle Invation: VOC'S - HCL, BNA- none (Y or N): N Weston Gulf Coast Labs Well sample: Well sampled 2/14/94 at 17:35 Well sampled 2/14/94 at 17:35	MW-10 MW-10 Well Locati Casing Mal Casing Mal Casing Mal Well Depth (From T.O.C.): 4.61' Pepth (From T.O.C.): PRequirement (gal): Requirement (gal): Requirement (pal): Requirement (pal): Requirement (pal): Requirement (pal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (mm Pad Corner (NW) 46.5S, 19.6W MW-10	MW-10 Well Locati	MW-10 MW-10 MW-10 MW-10 MW-10 MW-10 Mell Locati Casing Mat Casing Mat Well Depth Well Perameters Well Locati Casing Mat Well Depth Well Permping Characteristics: pH-7.2 Cond. 6.59 Temp. 4.2°C Turb. 124 pH:7.1 Cond. 7.67 Temp. 4.2°C Turb. 168 pH:7.2 Cond. 7.67 Temp. 4.2°C Turb. 61.5 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 61.5 pH:7.2 Cond. 7.57 Temp. 3.9°C Turb. 60.1 pH Cond. Temp. 3.9°C Turb. 60.1 pH Cond. Temp. 3.9°C Turb. 60.1 pH Cond. Temp. 3.9°C Turb. 60.1 pH Cond. Temp. 3.9°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH Cond. Temp. 3.9°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH Cond. Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 5.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 6.59 Temp. 4.2°C Turb. 60.1 pH:7.3 Cond. 6.59 Temp. 4.2
					well sample	well sample	Well sample	MW-10	f Sample: MW-10	f Sample:	f Sample:	VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - House of Sample: MW- 10 Well sample	voc's - Hoyon to MW- to well sample	cdures: All sampling equipment was disposable VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	bH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable vOC vials, 1 amber BNA bottle vOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable vOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable vOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. 2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. ph Turb	pH:7.1 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH Cond. Temp. Turb. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Mas disposable disposabl	mping Characteristics: pH-7.2 Cond6.59 Temp4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable 2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ment (gal): mping Characteristics: pH-7.2	ment (gal): mping Characteristics: pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.1 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Mass disposable pures: All sampling equipment was disposable vOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	Disposable Bailer ment (gal): pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.67 Temp.3.9°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. dures: All sampling equipment was disposable vOC'S - HCL, BNA- none N Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ment (gal): ment (gal): pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.1 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Mass disposable vOC'S - HCL, BNA- none N Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	Disposable Bailer ment (gal): pH:7.1	Well Depth Om T.O.C.): 4.61' Disposable Bailer	Casing Mat Well Depth T.O.C.): 4.61* Disposable Bailer ment (gal): 2.1 mping Characteristics: 2.1 pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. chures: All sampling equipment was disposable voc's - HCL, BNA- none N Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	Casing Material Well Depth (From T.O.C.): Hent: Disposable Bailler Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Rept. 4.6° Temp. 4.2° Turb.61.5 Reguirement (gal): Rept. 7 Temp.4.2° Turb.61.5 Reguirement (gal): Rept. 7 Temp.4.2° Turb.61.5 Reguirement (gal): Rept. 7 Temp.4.2° Turb.60.1 Reguirement (gal): Rept. 7 Temp.4.2° Turb.60.1 Rept. 7 Turb.60.1	MW-10 Well Locati Casing Mat Casing Mat Casing Mat Casing Mat Casing Mat Well Depth (From T.O.C.): Hent: Disposable Bailer Requirement (gal): Sqal. Disposable Bailer 2.1 ment / Pumping Characteristics: Sqal. Disposable Bailer 2.1 ment / Pumping Characteristics: Sqal. Disposable Bailer 2.1 Temp. 4.2°C Turb.168 Disposable Bailer 2.1 Cond. 6.59 Temp.4.2°C Turb.168 Disposable Disposable Temp. 1.5°C Turb.60.1 Disposable Disposable Disposable Disposable Disposable Squipment was disposable S	MW-10 Well Locati	MW-10 Well Locati	MW-10 Well Locati Casing Mal e Ground: Depth (From T.O.C.): Requirement (gal): 2.1 ment / Pumping Characteristics: gal. pH-7.2 Cond.4.67 Temp.4.1°C Turb.61.5 gal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 gal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 gal pH Cond. Temp. Turb. ion Procedures: All sampling equipment was disposable iners: 2 VOC vials, 1 amber BNA bottle rivation: VOC'S - HCL, BNA- none (Y or N): N Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	mm Pad Corner (NW) 46.5S, 19.6W MW-10	MW-10 MW-10 Well Locati Casing Mat Casing Mat Well Perth Casing Mat Well Perth Casing Mat Well Depth Well Perth Casing Mat Well Perth Well Perth Well Perth Well Perth Well Depth Well Depth Well Depth Well Perth Casing Mat Well Depth Well Perth Well Depth Well Depth Well Depth To casing Mat Well Casing Mat Temp. 4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.1°C Turb.61.5 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. Turb. Method: Casing Mat Well Coast Labs To: Well sample 2/14/94 at 17:35	AW-10 MW-10 MW-10 Well Locati Casing Mai Comer (NW) 46.5S, 19.6W From T.O.C.): Disposable Bailer uirement (gal): 2.1 / Pumping Characteristics: pH-7.2 Cond. 4.67 Temp. 4.1°C Turb. 168 pH:7.2 Cond. 7.57 Temp. 3.9°C Turb. 60.1 pH Cond. Temp. pH Cond. Temp. All sampling equipment was disposable rocedures: All sampling equipment was disposable on: VOC'S - HCL, BNA- none N): N Method: well sampled 2/14/94 at 17:35
					well sample	well sample	Well sample	MW-10	f Sample: MW-10	f Sample:	r Sample:	VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - HCL, BNA- none VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - Howell sample:	voc's - Howell sample:	cdures: All sampling equipment was disposable sidures: All sampling equipment was disposable sides. 2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable. 2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb. phi. Turb.60.1 phi. Turb.60.1 phi. Turb.60.1 phi. Turb.61.5 phi. Turb.60.1 phi. Turb.60.	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. H Cond. Temp. Turb. All sampling equipment was disposable grown as disposable words and purple and purple words. YOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.3.9°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. Half Sampling equipment was disposable voc's - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable 2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Was disposable with the condition of the	pH-7.2 Cond6.59 Temp4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond. Temp. Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Was disposable and the second state of the se	mping Characteristics: pH-7.2 Cond6.59 Temp4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable vOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ment (gal): mping Characteristics: pH-7.2	ment (gal): mping Characteristics: pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.1 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. H Cond. Temp. Stures: All sampling equipment was disposable equipment was disposable voc's - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	Disposable Bailer ment (gal): pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. Temp. Turb.60.1 pH Cond. Temp. Mass disposable dures: All sampling equipment was disposable voc's - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	Disposable Bailer 2.1 ment (gal): 2.1 mping Characteristics: 2.1 pH-7.2 Cond.4.67 Temp.4.2°C Turb.124 pH:7.1 Cond.7.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. Turb.60.1 pH:7.2 Cond. Temp. Turb.60.1 pH:7.2 Cond. Temp. Turb.60.1 pH:7.2 Cond. Temp. Turb.60.1 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond. Temp. Turb.60.1 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond. Temp. Mass disposable pH:7.2 All sampling equipment was disposable vOC'S - HCL, BNA- none Method: f Sample: Method: f Sample: Method: f Sample: Method: well sampled 2/14/94 at 17:35	om T.O.C.): 4.61' Disposable Bailer ment (gal): 2.1 mping Characteristics: 2.1 pH:7.1 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable was disposable none VOC'S - HCL, BNA- none Method: f Sample: Method: MW- 10 Weston Gulf Coast Labs	ment (gal): Cond. 6.59 Cond. 7.67 Temp. 4.2°C Turb. 168 pH:7.2 Cond. 7.67 Temp. 4.2°C Turb. 168 pH:7.2 Cond. 7.67 Temp. 3.9°C Turb. 61.5 cures: All sampling equipment was disposable equipment was disposable and process a	Casing Mat Well Depth T.O.C.): 4.61* Well Depth Toisposable Bailer ment (gal): 2.1 mping Characteristics: pH-7.2 Cond6.59 Temp4.2°C Turb124 pH:7.1 Cond.7.67 Temp.4.1°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH:7.2 Cond. Temp. Turb. pH:7.2 Cond. Temp. Mass disposable dures: All sampling equipment was disposable voc's - HCL, BNA- none VOC'S - HCL, BNA- none Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	Casing Mat Cound: Casing Mat Casing Mat Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Depth Well Sample: 2.1 Well Depth	MW-10 Well Locati Casing Mati Pupth (From T.O.C.): Requirement (gal): Rept. 4.61' Remp. 4.2°C Turb.168 Rept. 168 Rept	MW-10 Well Locati Casing Mat e Ground: Pepth (From T.O.C.): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Requirement (gal): Rep.4.2°C Turb.168 Regularement (gal): Rep.4.2°C Turb.61.5 Regularement (gal): Rep.4.2°C Turb.61.5 Regularement (gal): Remp.4.2°C Turb.61.5 Regularement (gal): Regularement (gal): Remp.4.2°C Turb.61.5 Regularement (gal): Rep.4.2°C Turb.61.5 Regularement (gal): Remp.4.2°C Turb.61.5 Regularement (gal): Regularement (gal): Remp.4.2°C Turb.61.5 Regularement (gal):	MW-10	MW-10 Well Locati	MW-10 Well Locati	MW-10 MW-10 Well Locati Casing Mat Casing Mat Well Pepth Uirement (gal): PH-7.2 Cond. 6.59 PH-7.2 Cond. 7.57 PH-7.2 Cond. Temp. 4.2°C Turb.61.5 PH-7.2 Cond. Temp. 4.2°C Turb.60.1 PH Cond. Temp. Weston Gulf Coast Labs To: Weston Gulf Coast Labs To: Well sampled 2/14/94 at 17:35	SKCH SKCH SKCH
					well sample	well sample	well sample	MW-10	f Sample: MW-10	f Sample:	f Sample:	VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	VOC'S - Howell sample:	dures: 2 VOC vial: VOC'S - Ho MW- 10	cdures: All sampling equipment was disposable should be supposed to the samples and samples and samples are sampled 2/14/94 at 17:35	bH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 bH Cond. Temp. Turb. cdures: All sampling equipment was disposable. 2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Turb. phical sequipment was disposable disposable and per BNA bottle phical sequipment was disposable below. PVOC'S - HCL, BNA- none phical sequipment was disposable below. N Method: phical sequipment was disposable below. N Method: phical sequipment was disposable below. N Method: phical sequipment was disposable below. N Method: phical sequipment was disposable below.	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. All sampling equipment was disposable voc:s - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.3.9°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. Half Sampling equipment was disposable voc: - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable VOC'S - HCL, BNA- none N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Turb.60.1 pH Cond. Temp. Was disposable pures: All sampling equipment was disposable pures: N MW-10 Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	pH:7.1 Cond.4.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH Cond. Temp. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Mass disposable and the second secon	mping Characteristics: pH-7.2 Cond6.59 Temp4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.1°C Turb.168 pH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 pH Cond. Temp. Turb. cdures: All sampling equipment was disposable 2 VOC vials, 1 amber BNA bottle VOC'S - HCL, BNA- none N Method: f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	ment (gal): mping Characteristics: pH-7.2	ment (gal): ment (gal): pH-7.2 Cond6.59 Temp.4.2°C Turb124 pH:7.1 Cond.4.67 Temp.4.2°C Turb124 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH Cond. Temp. Turb. Turb. pH Cond. Temp. Turb. pH Cond. Temp. Hothod: ph Cond. Temp. Method: f Sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	Disposable Bailer ment (gal): mping Characteristics: pH:7.1	Disposable Bailer ment (gal): 2.1 mping Characteristics: pH-7.2 Cond.4.67 Temp.4.1°C Turb124 pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH:7.2 Cond. Temp. Turb.61.5 pH:7.2 Cond. Temp. Turb.61.5 pH:7.2 Cond. Temp. Method: pdures: All sampling equipment was disposable VOC'S - HCL, BNA- none N Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	om T.O.C.): Disposable Bailer ment (gal): pH-7.2 Cond.4.67 Temp.4.2°C Turb.168 pH:7.1 Cond.7.67 Temp.4.2°C Turb.168 pH:7.2 Cond.7.57 Temp.3.9°C Turb.61.5 pH-7.2 Cond. Temp. Turb. H Cond. Temp. Turb. H Cond. Temp. Turb. OC'S - HCL, BNA- none Method: f Sample: Weston Gulf Coast Labs well sampled 2/14/94 at 17:35	ment (gal): Disposable Bailer ment (gal): DH-7.2 Cond6.59 Temp.4.2°C Turb124 DH:7.1 Cond.4.67 Temp.4.2°C Turb.168 DH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 DH Cond. Temp. Turb. Turb. DH Cond. Temp. Mas disposable equipment was disposable equipment was disposable voc's - HCL, BNA- none N MW-10 Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	Casing Mat Well Depth Well Depth Disposable Bailer ment (gal): DH-7.2 Cond6.59 Temp4.2°C Turb124 DH:7.2 Cond.7.57 Temp.4.1°C Turb.168 DH:7.2 Cond.7.57 Temp.4.2°C Turb.61.5 DH:7.2 Cond. Temp. Turb. DH:7.2 Cond. Temp. Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	Casing Material Well Depth (From T.O.C.): Pepth (Path Cond. F.57 Temp.4.2°C Turb.61.5 Pemp.4.2°C Turb.61.5	well Locati Ground: Well Locati Casing Mat Casing Mat Casing Mat Casing Mat Well Depth Nent: Disposable Bailer Requirement (gal): Rept. 4.61' Rept.	MW-10 Well Locati	MW-10 Well Locati	MW-10 MW-10 Well Locati Casing Mat Casing Mat Casing Mat Casing Mat Casing Mat Well Depth (From T.O.C.): Pepth (From T.O.C.): Septh (From T.O.C.): Pepth (From T.O.C.): A.61' Well Depth Well Depth Well Depth Casing Mat Well Depth Casing Mat Well Depth Casing Mat Well Depth Casing Mat Well Depth Casing Mat Casing Mat Well Depth Casing Mat Temp. 2.1 Turb.168 Digal pH-7.2 Cond.4.67 Temp.4.1°C Turb.168 Digal pH:7.2 Cond.7.67 Temp.4.2°C Turb.61.5 Digal pH:7.2 Cond.7.57 Temp.4.2°C Turb.60.1 Digal pH:7.2 Cond.7.57 Temp.3.9°C Turb.60.1 Digal pH:7.2 Cond. Temp. Digal pH:7.2 Cond. Temp. Well sampling equipment was disposable well sample: Weston Gulf Coast Labs Well sampled 2/14/94 at 17:35	MW-10 Well Locati	MW-10 MW-10 Well Locati Casing Mat Well Depth Disposable Bailer uirement (gal): PH-7.2 Cond. 6.59 Temp. 4.2°C Turb. 168 pH:7.1 Cond. 7.67 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH:7.2 Cond. 7.57 Temp. 4.2°C Turb. 60.1 pH Cond. Temp. Tocedures: All sampling equipment was disposable 1 2 VOC vials, 1 amber BNA bottle 1 2 VOC vials, 1 amber BNA bottle 2 VOC vials, 1 amber BNA bottle 3 2 VOC vials, 1 amber BNA bottle 3 2 VOC vials, 1 amber BNA bottle 4 Weston Gulf Coast Labs To: Well sampled 2/14/94 at 17:35	SKCH SKCH SKCH

APPENDIX I:

Slug Test Data and Calculations

Application of Bouwers-Rice Method to Determine Hydraulic Conductivity (K).

Bouwers-Rice Equations for Fully Penetrating Wells in an Unconfined Aquifer:

Penetrating Wells, Water Resources Research, Vol. 12, No. 3, June, 1976. Bouwers, Rice, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially

ᄌ [rc^2ln(Re/rw)/2L][(1/t)ln(yo/yt)]

1/[1.1/ln(H/rw) + C/(L/rw)]

ln(Re/rw) =

where: hydraulic conductivity (length/time)

7 effective radius over which drawdown/recovery is dissipated (length) well casing radius (length)

₹ Re radius of casing plus thickness of gravel envelope or developed zone (length)

height of screen or perforated zone in well casing (length)

time of a given static measurement during drawdown/recovery

న initial drawdown relative to static water level after slug withdrawal (length) water level displacement relative to static water level after a given time, t (length)

distance from bottom of well screen to water table (length)

dimensionless parameter that is a function of L/rw

00

saturated aquifer thickness (length)

Given:

L/rw = 21.14

O 11 1.75

(see Figure 3)

therefore:

solving for ln(Re/rw):

2,4098

ln(Re/rw) =

from Figure 1, the water level displacement = 0.1 feet when t = 60 minutes; therefore:

60 minutes

(1/t)ln(Yo/Yt)

0.02682 (1/minutes)

ᅎ 2.46E-05 4.85E-05 cm/sec ft/min

February 16, 1994 Rising Head Test Data from MW-2, Safety-Kleen Chicago Recycle Center

test start time = initial static water level (below TOC) = test stop time 11:51 13:31 3.42 feet @ 11:51

Safety-Kleen Chicago Recycle Center, Bailer Rising Head Test in MW-2 Test 4 Step 0, February 16, 1994

February 16, 1994 Rising Head Test Data from MW-2, Safety-Kleen Chicago Recycle Center

0.1800 1.31	_	0.1733 1.32		0.1666 1.33	0.1600 1.33			0.1500 1.35	0.1466 1.35						0.1233 1.38				0.1100 1.40				0.0933 1.43						0.0733 1.45					0.0533 1.49	0.0466 1.51			0.0366 1.54	0.0300 1.53				0.0166 1.56				0.0000 1.71	Time (min) yt (ft)	test stop time ≐	test start time =	initial static water level (below TOC) =
0.6433 0.92		0.6100 0.93	0.5933 0.94		0.5600 0.96			0.4933 1.00	0.4766 1.01	0,4600 1.03						0.3433 1.13			0.2933 1.18	0.2900 1.19				0.2/33 1.20						0.2500 1.23					0.2333 1.25				0.2133 1.27					0.1933 1.30				Time (min) yt (ft)	13:31		3.42 feet
																																																			@ 11:51
a. 600	7.9600	7.7600	7.5600	7.3600	7.1600	6.7600	6.5600	6.3600		5.9600	5.7600	5.5600	5.3600	5.1600	4.9600	4.7600	4.3600	4.1600	3.9600		3.5600	3.3600	3,1600	2,9600	2.5600	2.3600				1.5600			0.9433		0.9100				0.8266					0.7266				Time (nin)			
0.39	0.40	0.40	0.40	0.41	0.41	0.42	0.42	0,43	0.43	0.44	0.44	0.45	0.46	0.46	0.47	0.48	0.49	0.50	0.51	0,52	0.53	0.54	0.56	0.57	0.50	0.61	0.63	0.65	0.67	0.70	0.//	0.82	0.82	0.83	0.88	0.84	0.85	0.85	0.86	0.87	0.87	0.88	0.89	0.89	0.90	0.80	0.91	71 (ft)			
	99.9600	\	95.9600	93.9600	91.9600	89.9600	87 9800	83.9600	81.9600	79.9600	77.9600	75.9600	73.9600	71.9600	69,9600	67.9600	65.9600	63 9600	59,9600	57.9600	55.9600	53.9600	51.9600	49.9600	47,9600	43.9600	41.9600	39.9600	37.9600	35.9600	33.9600	29.9600	27.9600	25,9600	23.9600	21 9600	17.9600	15.9600	13.9600	11,9600	9.7600	9.5600	9.3600	9,1600	8.9600	8.7600	8.3600	Time (min)			
	0.01	0.01	0.01	0.02	0.02	0.03	0 0	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.07	0.08	0.09	0.10	0.11	0.11	0.11	0.12	0.13	0.14	0.14	0.16	0.17	0.18	0.19	0.20	0.22	0.23	0.25	0.26	0.27	0.29	0.31	0.32	0.33	0.35	0.37	0.37	0.38	0.38	0.38	0.38	0.39	yt (ft)			

EVALUATION OF FEBRUARY 15, 1994 BAILDOWN TEST DATA

Safety-Kleen Chicago Recycle Center

Monitoring Well MW-8, Bailer Falling Head Test (TOSO)

Application of Bouwers-Rice Method to Determine Hydraulic Conductivity (K)

Bouwers-Rice Equations for Fully Penetrating Wells in an Unconfined Aquifer:

Bouwers, Rice, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially

Penetrating Wells, Water Resources Research, Vol. 12, No. 3, June, 1976.)

ㅈ [rc^2ln(Re/rw)/2L][(1/t)ln(yo/yt)]

In(Re/rw) 11 1/[1.1/ln(H/rw) + C/(L/rw)]

hydraulic conductivity (length/time)

ਨ well casing radius (length)

æ effective radius over which drawdown/recovery is dissipated (length)

₹ radius of casing plus thickness of gravel envelope or developed zone (length)

height of screen or perforated zone in well casing (length)

time of a given static measurement during drawdown/recovery

initial water level displacement relative to static water level after slug submersion (length)

water level displacement relative to static water level after a given time, t (length)

T distance from bottom of well screen to water table (length)

dimensionless parameter that is a function of L/rw

saturated aquifer thickness (length)

 \Box

where: s

IJ

± ₹

Q

₹ გ

Geometry of MW8

_/rw = 13.45

 \circ Ħ

therefore:

1.75

(see Figure 3)

solving for ln(Re/rw):

2.0517

In(Re/rw) =

from Figure 1, the water level displacement = 0.1 feet when t = 60 minutes; therefore:

(1/t)ln(Yo/Yt)

0.54512

(1/minutes)

0.32

minutes

ㅈ 4.26E-04 8.39E-04 cm/sec ft/min

Safety-Kleen Chicago Recycle Center, Bailer Falling Head Test in MW-8 Test 0 Step 0, February 15, 1994

February 15, 1994 Falling Head Test Data from MW-8, Safety-Kleen Chicago Recycle Center

																																																						•
0.1700	0.1666	0.1633	0.1600	0.1566	0.1533	0.1500	0.1466	0 1433	0.1400	0.1366	0.1333	0.1300	0.1266	0.1233	0.1200	0.1166	0.1133	0.1100	0.1066	0.1033	0.1000	0.0966	0.0933	0.0900	0.0866	0.0833	0.0760	0.0768	0.0700	0.0000	0.0633	0.0600	0.0566	0.0533	0.0500	0.0466	0.0433	0.0400	0.0366	0.0333	0.0200	0.0233	0.0200	0.0166	0.0133	0.0100	0.0066	0.0033	0,0000	Time (min)	test stop time =	test start time =	initial static water	
0.85	0.84	0.88	0.86	0.82	0.87	1.02	0.77	0.86	0.87	0.87	0.87	0.87	0.87	0.88	88.0	0.88	0.88	0.88	0.89	0.89	0.89	0.89	0.89	0.89	0.00	0.90	0.90	0.90	0.91	0.90	0.91	0.92	0.90	0.92	0.94	0.92	0.86	1.09	0.90	0.87	0.94	0.94	0.94	0.94	0.94	0.95	0.95	0.95	0.95	yr (ft)			initial static water level (below TOC) =	
0.3833	0.3666	0.3500	0.3333	0.3300	0.3266	0.3233	0.3200	0.3166	0.3133	0.3100	0.3066	0.3033	0.3000	0.2966	0.2933	0.2900	0.2866	0.2833	0.2800	0.2766	0.2733	0.2700	0.2666	0.2633	0.2600	0.2566	0.2533	0.2500	0.2433	0.2700	0.2300	0.2333	0.2300	0.2266	0.2233	0.2200	0.2166	0.2133	0.2100	0.2066	0.2033	0.1900	0.1933	0.1900	0.1866	0.1833	0.1800	0.1766	0.1733	Time (min)	10:45	9:41		
0.76	0.75	0.75	0.77	0.77	0.77	0.77	0.77	0.78	0.78	0.78	0.78	0.78	0.79	0.79	0.79	0.79	0.79	0.79	0.79	0.80	0.80	0.80	0.80	0.80	0.80	0.80	0.81	0.81	0.80	0 0	0.70	0.75	0.87	0.82	0.81	0.84	0.82	0.83	0.83	0.82	0.84	0 0	0 0	0.83	0.84	0.86	0.83	0.83	0.86	yt (ft)			feet	
																														•																							@ 08:20	
4.0000	3.8000	3,6000	3,4000	3.2000	3.0000	2.8000	2.6000	2.4000	2.2000	2.0000	1.8000	1.6000	1.4000	1.2000	1.0000	0.9833	0.9666	0.9500	0.9333	0.9166	0.9000	0.8833	0.8666	0.8500	0.8333	0.8166	0.8000	0.7833	0.7666	0.7500	0.7333	0.7166	0.6833	0.6666	0.6500	0.6333	0.6166	0.6000	0,5833	0,5666	0.5500	0.5333	0.5000	0.4833	0.4666	0.4500	0.4333	0.4166	0.4000	Time (min)				
0.16	0.17	0.18	0.19	0.20	0.21	0.23	0.25	0.27	0.29	0.32	0.35	0.38	0.42	0.46	0.53	0.53	0.53	0.54	0.54	0.55	0.55	0.56	0.56	0.57	0.57	0.58	0.58	0.59	0.59	0.60	0.61	0.61	0.62	0.63	0.63	0.64	0.65	0.65	0.66	0.67	0.67	0.68	0 0.00	9 .	0.72	0.71	0.72	0.73	0.74	yt (ft)				
54,0000	52,0000	50.0000	48.0000	46.0000	44.0000	42,0000	40.0000	38,0000	36.0000	34.0000	32.0000	30.0000	28.0000	26.0000	24.0000	22,0000	20,0000	18.0000	16.0000	14.0000	12.0000	10.0000	9.8000	9.6000	9.4000	9.2000	9.0000	8.8000	8.6000	8.4000	8.2000	8.0000	7 8000	7.4000	7.2000	7.0000	6.8000	6.6000	6.4000	6.2000	6.0000	5.8000	5.6000	5.2000 5.4000	3000	4.8000	4.6000	4.4000	4.2000	Time (min)				
0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.05	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.08	0.08	0.09	0.09	0.09	0.10	0.10	0.10	0 :	0 0	0.12	0.13	0.14	0.15	yt (ft)				

EVALUATION OF FEBRUARY 15, 1994 BAILDOWN TEST DATA Safety-Kleen Chicago Recycle Center

Monitoring Well MW-8, Bailer Rising Head Test (TOS1)

Application of Bouwers-Rice Method to Determine Hydraulic Conductivity (K).

Bouwers-Rice Equations for Fully Penetrating Wells in an Unconfined Aquifer:

(reference: Penetrating Wells, Water Resources Research, Vol. 12, No. 3, June, 1976.) Bouwers, Rice, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially

[rc^2ln(Re/rw)/2L][(1/t)ln(yo/yt)]

ㅈ

ln(Re/rw) = 1/[1.1/ln(H/rw) + C/(L/rw)]

re: K = hydraulic conductivity (length/time)

rc = well casing radius (length)

Re effective radius over which drawdown/recovery is dissipated (length)

₹ radius of casing plus thickness of gravel envelope or developed zone (length)

L = height of screen or perforated zone in well casing (length)

time of a given static measurement during drawdown/recovery

5 initial drawdown relative to static water level after slug withdrawal (length)

water level displacement relative to static water level after a given time, t (length)

H = distance from bottom of well screen to water table (length)

C = dimensionless parameter that is a function of L/rw

saturated aquifer thickness (length)

Geometry of MW8

L/rw = 13.45

)

C = 1.

therefore:

1.75

5 (see Figure 3)

solving for In(Re/rw):

ln(Re/rw) =

2.0517

from Figure 1, the water level displacement = 0.1 feet when t = 60 minutes; therefore: 0.35 minutes

 $(1/t)\ln(Yo/Yt) =$

.

0.61607 (1/minutes)

K = 9.48E-04 ft/min = 4.82E-04 cm/sec

Safety-Kleen Chicago Recycle Center, Bailer Rising Head Test in MW-8 Test 0 Step 1, February 15, 1994

February 15, 1994 Rising Head Test Data from MW-8, Safety-Kleen Chicago Recycle Center

0.1467 1.04	0.1434 1.05		0.1367 1.05	0.1334 1.06	0.1300 1.06	0.1267 1.06					_											0.0734 1.12										0.0337 1.17			0.0234 1.19	0.0200 1.20	0.0167 1.20		0.0100 1.21			0.0000 1.24	Time (min) yt (ft)	test stop time =	tact ctart time =	initial static water level (below TOC) =
¥	5	_	ŏ	6	Ğ	ŏ	7	7	7	ຂັ	ã	ã	Ö	Č	Œ.	Ğ	0		1	→ (NO 1	1 0	, r	.	4 0	. 01	ଣ	OT.	ថា	œ	о	7	7 68	o co	<i>ی</i>	C	0	-		N	2	4	æ			hainw TOC) =
0.3134	0.2967	0.2934	0.2900	0.2867	0.2834	0.2800	0.2767	0.2734	0.2700	0.2667	0.2634	0.2600	0.2567	0,2534	0.2500	0.2467	0.2434	0.2400	0.2367	0.2334	0.2300	0.2267	0.2234	0.2200	0.2134	0,2100	0.2067	0.2034	0.2000	0.1967	0.1934	0.1900	0.1867	0.1800	0.1767	0.1734	0.1700	0.1667	0.1634	0.1600	0.1567	0.1534	Time (min)	11:04		ص
0.92	0.93	0.93	0.93	0.94	0.94	0.94	0.94	0.95	0.95	0.95	0.95	0.96	0.96	0.96	0.96	0.96	0.96	0.97	0.97	0.97	0.98	0.98	0.98	0.98	0 0 0	0.99	1.00	1.00	1.00	1.01	1.01	1.01	101	1.0	1.02	1.02	1.03	1.03	1.03	1.03	1.04	1.04	y1 (ft)			Teet
																																													1	@ 08:20
2.3634	2.1634	1.9634	1.7634	1.5634	1.3634	1.1634	0.9634	0.9467	0.9300	0.9134	0.8967	0.8800	0.8634	0.8467	0.8300	0.8134	0.7967	0.7800	0.7634	0.7467	0.7300	0.7134	0.6967	0.6800	0.6634	0.6300	0.6134	0.5967	0.5800	0.5634	0.5467	0.5300	0.5134	0.4967	0.4634	0.4467	0.4300	0.4134	0,3967	0.3800	0.3634	0.3467	Time (min)			
0.29	0.32	၁ င မ မ မ	0.38	0.41	0.47	0.52	0.60	0.61	0.61	0.62	0.62	0.63	0.64	0.64	0.65	0.66	0.66	0.67	0.68	0.68	0.69	0.70	0.70	0.71	0.72	0.73	0.75	0.75	0.76	0.77	0.78	0.78	0.79	0.80	0.82	0.83	0.84	0.85	0.86	0.87	0.88	0.89	yt (ft)			
25,9634	25,9634	21,9034	19.9634	17.9634	15.9634	13.9634	11.9634	9.9634	9.7634	9.5634	9.3634	9.1634	8.9634	8.7634	8.5634	8,3634	8.1634	7,9634	7.7634	7.5634	7,3634	7.1634	6.9634	6.7634	6.5634	6.3634	5.953 4 6.1634	5.7634	5.5634	5.3634	5.1634	4.9634	4.7634	4.5634	4.1034	3.9634	3.7634	3,5634	3.3634	3.1634	2.9634	2.7634	Time (min)			
0.00	9 6	0.00	0.00	0.00	0.01	0.01	0.02	0.03	0.03	0.04	0.04	0.04	0.04	0,04	0.04	0.04	0.05	0.05	0.05	0.06	0.06	0.08	0.06	0.07	0.07	0.08	0.08	0.09	0.10	0.10	0.11	0.11	0.12	0.13	0.14)))	0.17	0.18	0.19	0.21	0.23	0.25	ул (ft)			

EVALUATION OF FEBRUARY 15, 1994 BAILDOWN TEST DATA

Safety-Kleen Chicago Recycle Center

Monitoring Well MW-8, Pneumatic Rising Head Test (T1S0)

Application of Bouwers-Rice Method to Determine Hydraulic Conductivity (K).

Bouwers-Rice Equations for Fully Penetrating Wells in an Unconfined Aquifer:

Bouwers, Rice, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially

Penetrating Wells, Water Resources Research, Vol. 12, No. 3, June, 1976.)

木 [rc^2ln(Re/rw)/2L][(1/t)ln(yo/yt)]

ln(Re/rw) = 1/[1.1/ln(H/rw) + C/(L/rw)]

where: hydraulic conductivity (length/time)

ក well casing radius (length)

ъ effective radius over which drawdown/recovery is dissipated (length)

₹ radius of casing plus thickness of gravel envelope or developed zone (length)

height of screen or perforated zone in well casing (length)

time of a given static measurement during drawdown/recovery

₹ initial drawdown relative to static water level after air slug release (length)

≾ water level displacement relative to static water level after a given time, t (length)

distance from bottom of well screen to water table (length)

dimensionless parameter that is a function of L/rw

saturated aquifer thickness (length)

Given:

Geometry of MW8

L/rw = 13,45

C

therefore:

1.75

(see Figure 3)

solving for ln(Re/rw):

In(Re/rw) =

2.0517

from Figure 1, the water level displacement = 0.1 feet when t = 1 4 minutes 60 minutes; therefore:

(1/t)ln(Yo/Yt)

0.44

(1/minutes)

0.94757

7.41E-04 1.46E-03 cm/sec ft/min

Safety-Kleen Chicago Recycle Center Pneumatic Rising Head Test in MW-8 Test 1, Step 0, February 15, 1994

February 15, 1994 Rising Head Test Data from MW-8, Safety-Kleen Chicago Recycle Center

0.1466	0.1433	0.1400	0.1366	0.1333	0.1300	0.1266	0.1233	0.1200	0.1166	0.1133	0.1100	0.1066	0.1033	0.1000	0.0966	0.0933	0.0900	0.0866	0.0833	0.0800	0.0766	0.0733	0.0700	9990.0	0.0633	0.0600	0.0566	0.0533	0.0500	0.0466	0.0433	0.0400	0.0366	0.0333	0.0300	0.0266	0.0233	0.0200	0.0166	0.0133	0.0100	0.0066	0.0033	0.0000	Time (กมัก)	test stop time =	test start time =	initial static wate	
1.38	1.39	1.39	1,40	1.40	1.41	1.41	1.42	1.42	1.43	1.43	1,44	1.45	1.45	1.46	1.46	1.46	1.47	1.48	1.48	1.49	1.50	1.50	1.51	1.51	1.52	1.53	1.53	1.54	1,54	1.55	1.55	1,56	1.57	1.58	1.58	1.59	1.60	1.60	1,61	1.62	1.63	1.64	1.65	1.66	yt (ft)			initial static water level (below TOC) =	
0.2966	0.2933	0.2900	0.2866	0.2833	0.2800	0.2766	0.2733	0.2700	0.2666	0.2633	0.2600	0.2566	0.2533	0.2500	0.2466	0.2433	0.2400	0.2366	0.2333	0.2300	0.2266	0.2233	0.2200	0.2166	0.2133	0.2100	0.2066	0.2033	0.2000	0.1966	0.1933	0.1900	0,1866	0,1833	0.1800	0.1766	0.1733	0.1700	0.1666	0.1633	0.1600	0.1566	0.1533	0.1500	Time (min)	12:27	11:5/		
1.19	1.19	1.19	1.20	1.20	1.21	1.21	1.21	1.22	1.22	1.23	1.23	1.24	1.24	1.24	1.25	1.25	1.25	1.26	1.26	1.27	1.27	1.28	1.28	1.28	1.29	1.29	1.30	1.30	1.31	1.31	1.32	1.32	1.32	1.33	1.33	1.34	1.34	1.35	1.35	1.36	1.36	1.37	1.37	1.38	yt (ft)			teet @	
																																																@ 08:20	ı I
0.9000	0.8833	0.8666	0.8500	0.8333	0.8166	0.8000	0.7833	0.7666	0.7500	0.7333	0.7166	0.7000	0.6833	0.6666	0.6500	0.6333	0.6166	0.6000	0.5833	0.5666	0.5500	0.5333	0.5166	0.5000	0.4833	0,4666	0,4500	0.4333	0.4166	0,4000	0.3833	0.3666	0.3500	0.3333	0.3300	0.3266	0.3233	0.3200	0.3166	0.3133	0.3100	0.3066	0.3033	0.3000	Time (min)				
0.68	0.69	0.70	0.71	0.72	0.73	0.74	0.75	0.77	0.78	0.79	0.80	0.81	0.82	0.84	0.85	0.86	0.88	0.89	0.90	0.92	0.93	0.95	0.96	0.97	0.99	1.01	1.02	1.04	1.05	1.07	1.09	1.11	1.13	1.15	1.15	1.15	1.16	1.16	1.17	1.17	1.17	1.18	1.18	1.18	yt (ft)				
8.8000	B.6000	8.4000	8.2000	8.0000	7.8000	7.6000	7.4000	7.2000	7.0000	6,8000	6.6000	6.4000	6.2000	6.0000	5.8000	5.6000	5.4000	5,2000	5.0000	4.8000	4,6000	4.4000	4,2000	4.0000	3.8000	3.6000	3.4000	3.2000	3.0000	2.8000	2.6000	2.4000	2.2000	2.0000	1.8000	1.6000	1.4000	1.2000	1.0000	0.9833	0.9666	0.9500	0.9333	0.9166	Time (min)				
0.00	0.00	0.00	0.01	0.00	0.01	0.01	0.01	0.01	0.02	0.02	0.02	0.02	0.03	0.03	0.04	0.04	0.04	0.05	0.05	0.06	0.07	0.07	80.0	0.09	0.10	0.11	0.12	0.13	0.15	0.17	0.19	0.22	0.25	0.28	0.32	0.37	0.44	0.51	0.63	0.63	0.64	0.65	0.67	0.67	71 (ft)				

EVALUATION OF FEBRUARY 15, 1994 BAILDOWN TEST DATA

Safety-Kleen Chicago Recycle Center

Monitoring Well MW-8, Pneumatic Rising Head Test (T2S0)

Application of Bouwers-Rice Method to Determine Hydraulic Conductivity (K).

Bouwers-Rice Equations for Fully Penetrating Wells in an Unconfined Aquifer:

(reference: Bouwers, Rice, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially Penetrating Wells, Water Resources Research, Vol. 12. No. 3, June, 1976.)

In(Re/rw) = $1/[1.1/\ln(H/rw) + C/(L/rw)]$

ス ||

 $[rc^2\ln(Re/rw)/2L][(1/t)\ln(yo/yt)]$

where: hydraulic conductivity (length/time)

ਨ well casing radius (length)

굕 effective radius over which drawdown/recovery is dissipated (length)

₹ radius of casing plus thickness of gravel envelope or developed zone (length)

height of screen or perforated zone in well casing (length)

time of a given static measurement during drawdown/recovery

ర initial drawdown relative to static water level after air slug release (length)

≾ water level displacement relative to static water level after a given time, t (length)

distance from bottom of well screen to water table (length)

dimensionless parameter that is a function of L/rw

saturated aquifer thickness (length)

Given:

where: s

Geometry of MW8

L/rw = 13.45

C II

therefore:

1.75

(see Figure 3)

solving for In(Re/rw):

In(Re/rw) =

2.0517

from Figure 1, the water level displacement = 0.1 feet when t = 60 minutes; therefore:

0.5 1.19 minutes

(1/t)ln(Yo/Yt)

1.04308

(1/minutes)

ㅈ 8.16E-04 1.61E-03 cm/sec ft/min

Safety-Kleen Chicago Recycle Center Pneumatic Rising Head Test in MW-8 Test 2, Step 0 February 15, 1994

February 15, 1994 Rising Head Test Data from MW-8, Safety-Kleen Chicago Recycle Center

_	0.1467 1.32					_		•										0.0807 1.42				0.0734 1.45				_	0.0534 1.48						0.0334 1.63	0.0267 1.53			0.0167 1.58	0.0134 1.58				0.0000 2.76	Time (min) yt (ft)	test stop time =	test start time =	Hitter attack water tower towers
. 2	2	ω	4		Oi ·	OI.	.	03	7	7	w	•	•	•			- '	.			•	0.	0,					. •	Ü								-	•	~	_	_	- '	•			000000
0.3067	0.3034	0.3000	0,2967	0.2934	0.2900	0.2867	0.2834	0.2800	0.2767	0.2734	0.2700	0.2667	0.2634	0.2600	0.2567	0.2534	0.2500	0.2467	0.242.0	0.2367	0.2334	0.2300	0.2267	0.2234	0.2200	0.2167	0.2134	0.2067	0.2034	0.2000	0,1967	0.1934	0.1900	0.1867	0.1800	0.1767	0.1734	0.1700	0.1667	0.1634	0.1600	0.1567	Time (min)	12:55	12:41	
1.12	1.13	1.13	1.13	1.14	1.14	1.15	1.16	1.15	1.16	1.16	1.17	1.17	1.17	1.17	1.18	1.18	1.19	1.19	1 20	1.21	1.21	1.21	1.22	1.22	1.23	1,23	1.24	1,24	1.25	1.25	1.26	1.26	1.27	1.27	1.28	1.28	1.29	1.29	1.30	1.30	1.31 121	1.31	yt (ft)			
																																														•
1.1934	0.9934	0.9767	0.9600	0.9434	0.9267	0.9100	0.8934	0.8767	0.8600	0.8434	0.8267	0.8100	0.7934	0.7767	0.7600	0.7434		. 0.7100	0.6934	0.0000	0.6434	0.6267	0.6100	0.5934	0.5767	0,5600	0.5434	0.6367	0.4934	0.4767	0.4600	0.4434	0.4267	0.4100	0.3934	0.3600	0,3434	0.3267	0.3234	0.3200	0.3167	0.3134	Time (min)			
0.50	0.60	0.61	0.62	0.63	0.64	0.65	0.66	0.66	0.67	0.68	0.69	0.70	0.71	0.72	0.73	0.74	0.76	0.76	0.78	0.70	0.82	0.82	0.84	0.85	0.86	0.88	0.89	0.92	0.93	0.95	0.96	0.98	1.00	1.01	1.03	1.07	1.08	1.10	1.10	1.11	1.11	1.11	yt (ft)			
	13.9934	11,9934	9.9934	9.7934	9.5934	9.3934	9.1934	8.9934	8.7934	8,5934	8.3934	8.1934	7.9934	7.7934	7.5934	7.3934	7.1934	6,9934	6.7934	6.6934	6.1934	5.9934	5.7934	5,5934	5.3934	5.1934	4.9934	4.7934	4.3934	4.1934	3.9934	3.7934	3.5934	3.3934	3.1934	2.7934	2.5934	2.3934	2.1934	1.9934	1.7934	1.5934	Time (min)			
	0.01	0.01	0.02	0.02	0.02	0.01	0.02	0.02	0.02	0.02	0.02	0.02	0.02	0.03	0.02	0.03	0.03	0.03	0.03	0.03	2 9	0.04	0.04	0.04	0.05	0.05	0.06	0.06	0.07	0.08	0.09	0.10	0.11	0.12	0.13	0.15	0.19	0.22	0.25	0.28	0.32	0.37	¥ (#)			

EVALUATION OF FEBRUARY 16, 1994 BAILDOWN TEST DATA

Safety-Kleen Chicago Recycle Center

Monitoring Well MW-9, Pneumatic Rising Head Test (T3SO)

Application of Bouwers-Rice Method to Determine Hydraulic Conductivity (K).

Bouwers-Rice Equations for Fully Penetrating Wells in an Unconfined Aquifer:

Bouwers, Rice, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially

Penetrating Wells, Water Resources Research, Vol. 12, No. 3, June, 1976.)

ス [rc^2ln(Re/rw)/2L][(1/t)ln(yo/yt)]

In(Re/rw) 1/[1.1/ln(H/rw) + C/(L/rw)]

hydraulic conductivity (length/time)

ನ well casing radius (length)

Re effective radius over which drawdown/recovery is dissipated (length)

₹ radius of casing plus thickness of gravel envelope or developed zone (length)

height of screen or perforated zone in well casing (length)

time of a given static measurement during drawdown/recovery

5 initial drawdown relative to static water level after air slug release (length)

water level displacement relative to static water level after a given time, t (length)

distance from bottom of well screen to water table (length)

dimensionless parameter that is a function of L/rw

Q saturated aquifer thickness (length)

Given:

L/rw = 13.45 where: s

C Ш

therefore:

1.75

(see Figure 3)

2.0850

ln(Re/rw) =

solving for In(Re/rw):

from Figure 1, the water level displacement Yt = 0.1 ft t 0.1 feet when t = 60 minutes;

therefore:

4.3 minutes

 $(1/t)\ln(Yo/Yt) =$

0.1

0.37429 (1/minutes)

ス 11 5.85E-04 2.97E-04 cm/sec ft/min

Safety-Kleen Chicago Recycle Center, Pneumatic Rising Head Test in MW-9 Test 3 Step 0, February 16, 1994

February 16, 1994 Rising Head Test Data from MW-9, Safety-Kleen Chicago Recycle Center

0.1500	0.1467	0.1434	0.1400	0.1367	0.1334	0.1300	0.1267	0.1234	0.1200	0.1167	0.1134	0.1100	0.1067	0.1034	0.1000	0.0967	0.0934	0.0900	0.0867	0.0834	0.0800	0.0767	0.0734	0.0700	0.0667	0.0634	0.0800	0.0534	0.0500	0.0467	0.0434	0.0400	0.0367	0.0334	0.0300	0.0267	0.0234	0.0200	0.0167	0.0134	0.0100	0.0067	0.0034	0.0000	Time (min)	test stop time =	test start time =	initial static wate	
0.47	0.47	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.48	0.49	0.49	0.49	0.49	0.49	0.49	0.49	0.50	0.50	0.50	0.50	0.50	0.50	0,50	0.51	0.51	0.51	0.51) () 11 h	0.55	0.52	0.52	0.52	0.53	0.53	0.53	0.53	0.54	0.53	0.56	0.52	0.60	0.48	0.68	yt (ft)			initial static water level {below TOC} =	
0.3034	0.3000	0.2967	0.2934	0.2900	0.2867	0.2834	0.2800	0.2767	0.2734	0.2700	0.2667	0.2634	0.2600	0.2567	0.2534	0.2500	0.2467	0.2434	0.2400	0.2367	0.2334	0.2300	0.2267	0.2234	0.2200	0.2167	0.2134	0.2100	0.2037	0.2000	0.1967	0.1934	0.1900	0.1867	0.1834	0.1800	0.1767	0.1734	0.1700	0.1667	0.1634	0.1600	0.1567	0.1534	Time (min)	0.00	10:00		
0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.44	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.45	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.46	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	0.47	Y1 (ft)			feet @ 08:35	
1.3834	1.1834	0.9834	0.9667	0.9500	0.9334	0.9167	0.9000	0.8834	0.8667	0.8500	0.8334	0.8167	0.8000	0.7834	0.7667	0.7500	0.7334	0.7167	0.7000	0.6834	0.6667	0.6500	0.6334	0.6167	0.6000	0.5834	0.5667	0.5500	0.5334	0.5167	0.4834	0,466/	0.4500	0.4334	0.4167	0.4000	0.3834	0.3667	0.3500	0.3334	0.3167	0.3134	0.3100	0.3067	Time (min)			J	
0.28	0.30	0.33	0.33	0.34	0.34	0.34	0.34	0.34	0.35	0.35	0.35	0.35	0.35	0.36	0.36	0.36	0.36	0.37	0.37	0.37	0,38	0.38	0.38	0.38	0.38	0.39	0.39	0.39	0.39	0.40	9 9,40	0.40	0.41	0.41	0.41	0.42	0.42	0.42	0.43	0.43	0.43	0.44	0.44	0.44	yt (ft)				
15.9834	13.9834	11.9834	9.9834	9.7834	9.5834	9.3834	9.1834	8.9834	8.7834	8.5834	8.3834	8.1834	7.9834	7.7834	7.5834	7.3834	7.1834	6.9834	6.7834	6.5834	6.3834	6.1834	5,9834	5.7834	5.5834	5.3834	5,1834	4.9834	4.7834	4.5834	4.3834	4 1834	3.7034	3.5834 3.7834	3.3834	3.1834	2.9834	2.7834	2.5834	2.3834	2.1834	1.9834	1.7834	1.5834	Time (min)	l			
0.01	0.01	0.02	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.06	0.07	0.07	0.07	0.08	0.09	0.09	0.10	0.10	9 9	0	0.13	0.14	0.15	0.16	0.17	0.18	0.20	0.21	0.23	0.24	0.26	X E				

Safety-Kleen Chicago Recycle Center EVALUATION OF FEBRUARY 16, 1994 BAILDOWN TEST DATA

Monitoring Well MW-9, Pneumatic Rising Head Test (T3S1)

Application of Bouwers-Rice Method to Determine Hydraulic Conductivity (K).

Bouwers-Rice Equations for Fully Penetrating Wells in an Unconfined Aquifer:

Penetrating Wells, Water Resources Research, Vol. 12, No. 3, June, 1976.) Bouwers, Rice, A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers with Completely or Partially

ス $[rc^2ln(Re/rw)/2L][(1/t)ln(yo/yt)]$

In(Re/rw) 1/[1.1/ln(H/rw) + C/(L/rw)]

hydraulic conductivity (length/time)

Re ਨ effective radius over which drawdown/recovery is dissipated (length) well casing radius (length)

₹ radius of casing plus thickness of gravel envelope or developed zone (length)

height of screen or perforated zone in well casing (length)

time of a given static measurement during drawdown/recovery

₹ initial drawdown relative to static water level after air slug release (length)

water level displacement relative to static water level after a given time, t (length)

distance from bottom of well screen to water table (length)

dimensionless parameter that is a function of L/rw

saturated aquifer thickness (length)

Q

H, D

<u>_</u> 13.45 where: s

O

therefore:

1.75 (see Figure 3)

solving for In(Re/rw):

2.0850

ln(Re/rw) =

from Figure 1, the water level displacement 0.1 feet when t = 60 minutes; therefore:

ð minutes

(1/t)ln(Yo/Yt)

0.33582 (1/minutes)

ᅎ 5.25E-04 2.67E-04 cm/sec tt/min

February 16, 1994 Rising Head Test Data from MW-9, Safety-Kleen Chicago Recycle Center

							•																	0.0667 0.75	0.0600 0.75													0.0167 0.78		0.0100 0.80				Time (min) yt (ft)	test stop time ≂	test start time =	initial static water level (below TOC) =	
																														•																	ilow TOC) =	
	0.3000	0.2967	0.2934	0.2900	0.2867	0.2834	0.2800	0.2767	0.2734	0.2700	0.2667	0.2634	0.2600	0.2567	0.2534	0.2500	0.2467	0.2434	0.2400	0.2367	0.2334	0.2300	0.2267	0,2234	0.2200	0.2167	0.2100	0.2067	0.2034	0.2000	0.1967	0.1934	0.1900	0.1867	0.1834	0.1800	0.1767	0.1734	0 1700	0.1667	0.1634	0.1807	9	Time (min)	10:18	10:05		
0 68	0.68	0.68	0.68	0.68	0.68	0,69	0.69	0.69	0.69	0.69	0.69	0.69	0.69	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.70	0.71	0 71	0.71	0.71	0.71	0.71	0.71	0.71	0.71	0.72	0.72	0.72	0.72	0.72	0 79	0.72	0.72	0 0	1	yt (ft)			feet	
																																															@ 08:35	
0.9934	0.9767	0.9600	0.9434	0.9267	0.9100	0.8934	0.8767	0.8600	0.8434	0.8267	0.8100	0.7934	0.7767	0.7600	0.7434	0.7267	0.7100	0.6934	0.6767	0.6600	0.6434	0.6267	0.6100	0.5934	0.5767	0.5600	0.5434	0.5100	0.4934	0.4767	0.4600	0.4434	0.4267	0.4100	0.3934	0.3767	0.3600	0.3434	0.3267	0.3234	0.3200	0.3167	0 3134	Time (min)				
	0,53	0.53	0.53	0.54	0.54	0.54	0.55	0.55	0.55	0.56	0.56	0,56	0.57	0.57	0.58	0.58	0.58	0.59	0.59	0.59	0.60	0.60	0.60	0.61	0.61	0.61	0.62	3 0	0.63	0.64	0.64	0.65	0.65	0.65	0.66	0.66	0.67	0.67	0.67	0.68	0.68	0.68	0 68	yt (ft)				
10.8804	11.9934	9.9934	9.7934	9.5934	9.3934	9.1934	8.9934	8.7934	8,5934	8.3934	8.1934	7.9934	7.7934	7.5934	7.3934	7.1934	6.9934	6.7934	6,5934	6.3934	6.1934	5.9934	5.7934	5.5934	5.3934	5.1934	4.9934	4.7934	4.393 4 4.5934	4.1934	3.9934	3.7934	3.5934	3.3934	3.1934	2.9934	2.7934	2.5934	2.3934	2,1934	1.9934	1.7934	1.5934	Time (min)				
0.0	0.02	0.04	0.04	0.04	0.04	0.04	0.05	0.05	0.05	0.05	0.06	0.06	0.07	0.07	0.07	0.08	0.08	0.09	0.09	0.10	0.10	0.11	0.11	0.12	0.13	0.14	0.15	0.16	0.10	0.19	0.20	0.21	0.22	0.24	0.25	0.27	0.29	0.31	0.32	0.34	0.37	0.39	0.41	yt (ft)				

Safety-Kleen Chicago Recycle Center, Pneumatic Rising Head Test in MW-9 Test 3 Step 1, February 16, 1994

